6. Mathematics II Paper (Math.312), 2066

(Analytical Geometry & Vector Analysis)

When does the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represent a

 $14x^2 - 4xy + 11y^2 - 44x - 58y + 71 = 0$ represent?

latus rectum of the ellipse $9x^2 + 25y^2 = 225$.

parabola, an ellipse and hyperbola ? What conic does the equation

Define the tangent to a conic, $S = ax^2 + 2hxy + by^2 + x + 2fy + c = 0$ at (x_1, y_1) obtain the condition that the line lx + my + n = 0 may be a tangent to

Define the auxiliary circle and eccentric angle of a point with respect of the

Find the foci, directrices, eccentricity, the ends of latus rectum and length of

Define skew lines and line of shortest distance. Find the shortest distance between the lines $\frac{x}{2} = \frac{y}{-3} = \frac{z}{1}$ and $\frac{x+2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$. Find also the

Define a great and small circle of a sphere. Find the equation of a sphere for which the circle $x^2 + y^2 + z^2 + 7y - 2z + 2 = 0$, 2x + 3y + 4z = 8 is a great

Define tangent line and tangent plane at a point of the sphere. Find the equation to the spheres which pass through the circle $x^2 + y^2 + z^2 = 5$,

4x + 3y = 15:

Time: 3 hrs. apply the same apply Attempt ALL the questions.

I'nd the centre of the conic.

the conic S = 0 at (x_1, y_1) .

equation of shortest distance.

x+2y+3z=3 and touch the plane

ellipse $\frac{x^2}{x^2} + \frac{y^2}{x^2} = 1$.

1.

3.

circle.

5.	Define scalar triple product and prove geometrically that the s product represents the volume of the parallelopeped. Also verify	calar triple that in the	
	scalar triple product position of dot and cross can be interchanged.	[1+3+3]	
	Group "B"	10×4=40	
6.	What are the equation $(x-a)^2 + (y-b)^2 = c^2$ become when it is transformed		
	to parallel axes through the point $(a-c,b)$?	[4]	
	Apply the second of the second	al plantanti.	
	Find the polar coordinates of the points (3,4,5) and (-2,1,2).	[2+2]	
7.	Show that the line $x\cos\alpha + y\sin\alpha = p$ touches the ellipse $\frac{x^2}{a^2}$	$\frac{y^2}{h^2} = 1$ if	
latur.	$p^2 = a^2 \cos^2 \alpha + b^2 \sin \alpha$	COLUMN TO	

[3+4]

[2+5]

[1+1+5]

[1+1+5]

Show that the tangent at the extremity of any diameter of an ellipse is parallel to the chords which it bisect.

- 8. State the condition under which the general equation of second degree $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ may represent an ellipse. Find the centre of the conic section $2x^2 5xy 3y^2 x 4y + 6 = 0$ and its equation when transformed to the centre. [1+3]
- 9. Find the equation of the plane through the line $\frac{x-a}{l} = \frac{y-\beta}{m} = \frac{z-y}{n}$ parallel

to the line
$$\frac{x}{t} = \frac{y}{m} = \frac{z}{n}$$
.

10. Show that the equation to a right circular cone whose vertex is 0, axes OX and semivertical angle α is $y^2 + z^2 = x^2 \tan^2 \alpha$.

Define reciprocal cone. Prove that the cone $ax^2 + by^2 + cz^2 = 0$ and

 $\frac{x^2}{a} + \frac{y^2}{b} + \frac{z^2}{c} = 0$ are reciprocal.

- 11. Find the equation of the enveloping cylinder of the sphere $x^2 + y^2 + z^2 2x + 4y 1 = 0$ having its generators parallel to the line x = y = z. [4]
- 12. Obtain the condition that the plane lz + my + nz = p may touch the central conicoid $ax^2 + by^2 + cz^2 = 1$. [4]
- 13. Prove the following:

a.
$$(\vec{a} \times \vec{b})^2 = a^2b^2 - (\vec{a}.\vec{b})^2$$

b. If
$$\vec{a} + \vec{b} + \vec{c} = 0$$
, then $\vec{a} \times \vec{b} = +\vec{b} \times \vec{c} = \vec{c} \times \vec{a}$. [4]

14. If
$$\vec{r} = a\cos t \vec{i} + \alpha \sin t \vec{j} + \alpha t \tan \alpha \vec{k}$$
 find $\left[\frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2}\right]$ and $\left[\vec{r} \cdot \frac{d\vec{r}}{dt} \frac{d^2\vec{r}}{dt^2}\right]$. [4]

15. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point (2, -1, 2).

Prove that $\operatorname{curl} (\operatorname{grad} \phi) = 0$.

Mathematics II Paper (Math.312), 2067

(Analytical Geometry & Vector Analysis)

Bachelor Level /1 Year / Sc. & Tech. + Hum. Full Marks: 75
Time: 3 hrs.

Attempt ALL the questions

Group 'A' 5×7=35

What is conic section? When it becomes hyperbola? Obtain the length of the axes, eccentricity, coordinates of foci, equation of directrix and length of latus rectum of the hypoerbola 6x₂ - 25y₂ = 400 [1+1+5]

What are the conditions under which the second degree equation ax² + 2hxy + by² + 2gx + 2fy + c = 0 may represent-(i) a hyperbola (ii) an ellipse (iii) a parabola? What conic does the equation

 $12x^2 - 23xy + 10y^2 - 25x + 26y - 14 = 0$ represent?

If possible, find the centre and its equation referred to the circle. [1+1+3+2]

O

Define pole and polar with respect to conic. Obtain the equation of polar or any point (x', y') w.r.t. to the conic represented by $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$.

3. I we quation straight line passing through two given points (x_1, y_1, z_1) and (x_1, y_2, \dots, x_n)

Find the point where the line joining (2, 1, 3) and (4, -2, 5) cut: the plane (2x + y - z - 3) = 0. [3+4]

4. Define reciprocal cone. Prove that the equation $\sqrt{fx} + \sqrt{gy} + \sqrt{hz} = 0$ represent a cone which touches the coordinate planes and that equation of the receiprocal cone is fyz + gzx + hxy = 0. [1+6]

OR

Define a cone. Obtain the equation of cone with vertex (α, β, γ) and base the parabola $z^2 = 4ax$, y = 0.

 Define vector triple product of any non zero vectors a, b, c and give its geometrical meaning. Find an expression for a × (b × c). [1+2+4]

Group "B" 10×4=40

6. What does the equation $2x^2 + y^2 - 4x + 4y = 0$ become, when it is transferred to parallel axis through the point (1, -2)?

OR

Find the distance of the point (1, 2, 3) from the coordinate axes. Also find its distance from the origin. [3+1]

7. If e and e' the eccentricity of hyperbola and its conjugate prove that

- What is a focal chord of a conic? In any conic prove that the sum of the receiprocal of the segments of any focal chord is constant.
- 9. Find the equation of plane through (2, -3, 1) normal to the line joining (3, 4, -1) and (2, -1, 5)
- 10. The plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ meets the coordinates axes at A. B. C.

Prove that the equation of the cone generated by the lines drawn from O to meet the circle ABC is

$$yz\left(\frac{b}{c} + \frac{c}{b}\right) + zx\left(\frac{c}{a} + \frac{a}{c}\right) + xy\left(\frac{a}{b} + \frac{b}{a}\right) = 0$$

Show that the equation to a right circular cone whose vertex is O. axis OX and semi-vertical angle ' α ' is $y^2 + z^2 = x^2 \tan^2 \alpha$. [4]

11. Find the equation of the sphere which passes through the origin and the points (0, 1, -1), (-1, 2,0) and (1, 2,3).

OR

Find the equation of the sphere having the circle $x^2 + y^2 + z^2 = 9$, x - 2y + 2z = 5 as a great circle.

- 12. Tangent planes are drawn to the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ through the point (a, b, g). Prove that the perpendiculars to them form the origin generates the cone $(\alpha x + \beta y + \gamma z)^2 = a^2 x^2 + b^2 y^2 + c^2 z^2$. [4]
- 13. Show that: [a + bb + cc + a] = 2[abc] [4]
- 14. Prove that $[a \times b b \times c c \times a] = [a b c]^2$. [4]
- 15. The necessary and sufficient condition for the vector function of a scalar variable to have a constant magnitude is $\vec{a} \cdot \frac{d\vec{a}}{dt} = 0$. [4]

OR

If a is a constant vector then prove that

(i)
$$\vec{a} \cdot \nabla \left(\frac{1}{r}\right) = -\frac{\vec{a} \cdot \vec{r}}{r^2}$$

(ii) grad (r. a) = a.

[2+2]

Mathematics II Paper (Math.312), 2068

(Analytical Geometry & Vector Analysis)

Bachelor Level/I Year/ Sc. & Tech.+ Hum.

Full Marks: 75

Time: 3 hrs.

Attempt ALL the questions

Group "A"

5×7=35

 What type of the conic section is the hyperbola? Define its foci and eccentricity and directrix.

Determine the centre, coordinates of foci, the eccentricity, length of the latus rectum and the equation of the directrices of the hyperbola.

$$5x^2 - 6y^2 = 30. [1+2+4]$$

2. What conic does the equation

 $3x^2 - 8xy - 3y^2 + 10x - 13y + 8 = 0$ represent? If possible, find the centre and its equation referred to the centre. [2+5]

Or

Define pole and polar with respect to a conic. Determine the equation of the polar with respect to the conic represented by

$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$
 [2+5]

 Define the skew lines and the line of shortest distance. Find the shortest distance between the lines

$$\frac{x-3}{2} = \frac{x-4}{3} = \frac{z-5}{4}$$
 and $\frac{x-4}{3} = \frac{y-5}{4} = \frac{z-7}{5}$.

Also find the equation of the shortest distance.

11+4+21

4. What do you mean by a great circle and a small circle of the sphere? Find the equation of the sphere having the circle $x^2 + y^2 + z^2 = 9$; x - 2y + 2z = 5 as a great circle, determine its centre and radius.

Find the tangent line and tangent plane at a point of a sphere. Show that the plane 2x - y + 3z = 14 touches the sphere $x^2 + y^2 + z^2 - 4x + 2y - 4 = 0$. Find the point of contact.

- Define reciprocal system of vectors. If a', b', & c', be reciprocal system to three non coplanar vectors a, b, & c, then prove the followings:
 - (i) $\vec{a} \cdot \vec{b}' = \vec{b} \cdot \vec{b}' = \vec{c} \cdot \vec{c}' = 1$
 - (ii) $\vec{a} \cdot \vec{b}' = \vec{b} \cdot \vec{c}' = \vec{c} \cdot \vec{a}' = 0$
 - (iii) [a' b' c'] [a b c] = 1

Group "B" : 10×4=40

[+1+1+4]

- 6. If the axes be turned through an angle tan⁻¹(2) what does the equation 4xy 3x² = a² becomes ? [4]
- 7. Find the locus of the point of intersection of the tangents to the ellipse which meet at right angles. What is the nature of the locus? [3+1]:

OR

Show the line $x \cos \alpha + y \sin \alpha = p$ touches the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ if } p^2 = a^2 \cos^2 \alpha + b^2 \sin^2 \alpha.$$
 [4]

Find the equation of the polar with respect to the conic represented by the
equation

 $ax^2 + 2hxy + by^2 2gx + 2fy + c = 0$ [4]

Prove that the equation $\frac{1}{r} = 1 - e \cos \theta$ and $\frac{1}{r} = e \cos \theta - 1$ represent the same conic.

- 9. Find the equation of the plane through (-1, 1, -1) and (6, 2, 1) normal to the plane 2x + y + z = 5.
- 10. Find the shortest distance between the lines $\frac{x}{2} = \frac{y}{-3} = \frac{z^2}{1}$ and

$$\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$$

- 11. Find the equation of the enveloping cylinder of the sphere $x^2 + y^2 + z^2 + 2x + 4y 1 = 0$ having it generators parallel to the line x = y = z.
- 12. Obtain the condition that the plane $\ell x + my + nz = p$ may touch the central conicoid $ax^2 + by^2 + cz^2 = 1$.

Find the equation of the planes which contain the line given by 5x + 6y - 18 = 0 and 3y - z = 0 and touch the ellipsoid $5x^2 + 3y^2 = 36$.

13. If a = i - 2j + k, b = 2i + j + k and c = i + 2j - k verify that $a \times (b \times c) = (a \cdot c) b - (a \cdot b) c$.

14. Show that the necessary and sufficient condition for the vector function a of a scalar variable t to have constant magnitude is $\vec{a} \cdot \frac{d\vec{a}}{dt} = 0$.

 $5 \times 7 = 35$

A particle moves along the curve $x = 4 \cos t$, $y = 4 \sin t$ z = 6t. Find the magnitude of acceleration at time $t = \pi$

15. Define curl of a vector function. If \$\phi\$ be a scalar function prove that curl (grad the commend to 4 days in another the progent distribution of [1+3]

OLD COURSE

Attempt ALL the questions

Group "A"

- hat type of locus is the ellipse? In what respect does ellipse differ from hyp bola? Find the centre, coordinates of foci, the eccentricity, latus rectum and the equation of the directrices of the ellipse $9x^2 + 1$ = 144. [1+1+6]
- Define a conic. Obtain the polar equation of a conic having given its eccentricity e and latus rectum equal to 21 and focus being taken as pole. Also find the equation of its directrix.
- What does the shortest distance between two lines mean? Find the magnitude and the equation of the line of shortest distance between the lines $\frac{x-3}{-1} = \frac{y-4}{2}$

$$=\frac{z+2}{1}$$
 and $\frac{x-1}{1} = \frac{y+7}{3} = \frac{z+2}{2}$ [1+3+3], eq. (1) in the constant of the second second

What are coplanar lines? Find the condition that the two lines in symmetrical form are coplanar. Also show that the lines

$$\frac{x-1}{2} = \frac{y-2}{2} = \frac{z-3}{4}$$
; $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ are coplann; the solution

Define a cone. Determine the equation of the cone with vertex (α, β, γ) and 4. base $y^2 = 4ax$, z = 0.

Define the generator of a cone. Find the condition that the cone has three mutually perpendicular generators.

Define the scalar triple product of three non-zero vectors and interpret it geometrically. Prove that the scalar triple product of three noonzero vectors is zero when two of the vectors are equal and parallel. Group "But and married and the

- What does the equation $(x h)^2 + (y k)^2 = r^2$ become when it is transferred to parallel axes through the point (h, k, -r)?
- Find the equation to the common tangent of the circle $x^2 + y^2 = 4ax$ and the parabola $y^2 = 4ax$. desire continued. In common and

Chicagolia sas (OR, poset) = y = v1 he 1 ti = *1' = 16

Show that line $\ell x + my = n$ is a normal to the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ if } \frac{a^2}{f^2} + \frac{b^2}{m^2} = \frac{(a^2 - b^2)^2}{n^2}$$
 [4]

8. Prove that the equation $\frac{\ell}{r} = 1 - e \cos \theta$ and $\frac{\ell}{r} = e \cos \theta - 1$ represent the same conic.

9. Find the equation of the plane through (2, -3, 1) normal to the line joining (3, 4-1) and (2, -1, 5). [5]

10. Prove that $ax^2 + by^2 + cz^2 + 2ux + 2vy + 2wz + d = 0$ represent a cone if $\frac{u^2}{a} + \frac{v^2}{b} + \frac{w^2}{c} = d$ [4]

OR

Define reciprocal cone.

Prove that the cone ayz + bzx + cxy = 0 and $\sqrt{ax} + \sqrt{by} + \sqrt{cz} = 0$ are reciprocal.

11. What are coplanar lines?

Prove that the lines $\frac{x+5}{3} = \frac{y+4}{1} = \frac{z-7}{-2}$ and

$$3x + 2y + z - 2 = 0 = x - 3y + 2z - 13$$
 are coplanar: [1 + 3]

12. Obtain the condition that the line $\ell x + my + nz = p$ may touch the central conicoid $ax^2 + by^2 + cz^2 = 1$.

OR

Prove the equations of two planes which contain the line given by 5x + 6y - 18 = 0 and 3y - z = 0 and touch the ellipsoid. $5x^2 + 3y^2 + z^2 = 36$.

13: Prove that following:

(a) $(a \times b)^2 = a^2b^2 - (a \cdot b)^2$

(b) If
$$\vec{a} + \vec{b} + \vec{c} = 0$$
, then $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$ [2+2]

14. Prove that the necessary and sufficient condition for the vector function of a scalar variable to have a constant magnitude is

$$\frac{\vec{a}}{a} \cdot \frac{da}{dt} = 0.$$
 [4]

OR

If r_1 and r_2 are the directional vector functions then prove that $\frac{d}{dt} (r_1 \times r_2) =$

$$\vec{r}_1 \times \frac{d\vec{r}_2}{dt} + \frac{d\vec{r}_1}{dt} \times \vec{r}_2. \tag{4}$$

15. Show that div $(\hat{r}) = \frac{2}{r}$, where

$$\vec{x}' = x\vec{i} + y\vec{j} + 2\vec{k}$$
. [4]

Mathematics II Paper (Math.312), 2069 (Analytical Geometry & Vector Analysis)

Rac	helor Level/I Year/Sc. & Tec	h + Hum	Full Marks: 100
	: Regular Examinee only)	n, i Hugii.	Time :3hrs.
1000	mpt ALL the questions.	the Great of I and	Little State Line copta
Auc	mpt ALL the questions.	GROUP 'A'	5×7=35
A.	Define conic section. Find		
	of axes of the ellipse $x^2 + 4$		
	Define general equation of		
2.	second degree in x & y rep		[1+6]
	second degree in x & y rep	Or	
	Find the centre of the coni	$c 9v^2 - 4vv + 6v^2 - 14v - 1$	Rv + 1= 0 show that this
	conic is an ellipse. Also fin		
3.			
-	shortest distance between the		[1+6]
4.	Define a cone. Determine		
	base $y^2 = 4ax$, $z = 0$.	Cartifal Balance	[1+6]
	A-10.	Or .	SHEAR CONTRACTOR
	Define the generator of a	cone. Find the condition	that the cone has three
	mutually perpendicular gen		
5.	Define reciprocal system of	of vectors. If a', b', c' be re	ciprocal system to three
1 10	non-coplanar vectors a, b, c	then prove the followings	TO SERVICE OF THE SER
1	(i) $\vec{a} \cdot \vec{a}' = \vec{b} \cdot \vec{b}' = \vec{c} \cdot \vec{c}' = 1$		Period the coaling
	(ii) $\vec{a} \cdot \vec{b}' = \vec{b} \cdot \vec{c}' = \vec{c} \cdot \vec{a}' = 0$		5x + 6v - 18 = 0 and
· .	(iii) $[\vec{a}' \ \vec{b}' \ \vec{c}'] \ [\vec{a} \ \vec{b} \ \vec{c}] = 1$		[1+1 ^{1/2} +1 ^{1/2} +3]
	Con the sales of	GROUP 'B'	10×4=40
6.	What does the equation (x	$(-a)^2 + (y - b)^2 = c^2$ become	when it is transferred to
	parallel axes through the po		
,7.	Define normal to the ellips		
J	normal to the ellipse $\frac{x^2}{a^2} + \frac{y}{b}$	$r = 1$ if $\frac{1}{r^2} + \frac{1}{m^2} = \frac{1}{m^2}$	国 第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十
		20	
	0	Or	a Can allinas is parallal
	Show that the tangent at the		of an empse is paramer [4]
0	to the chords which it bised		
	Find the centre of the conic Find the point where the lin	section $9x - 4xy + 6y - 1$	auto the plane
9.		e joining (2, 1, 3) (4, -2, 3)	euts the plane
	2x + y - z - 3 = 0.	Or	(4)
24	Find the equation of line the	rough the point (2 3 1) and	narallel to the planes
	2x + 3y + 4z = 5 and 3x + 4	100 grid the point (2, 3, 1) and 100 grid the 100	[4]
10.	Find the shortest distance b	All the second s	

$$\frac{x-3}{2} = \frac{y-4}{3} = \frac{z-5}{4}$$
 and $\frac{x-4}{3} = \frac{y-5}{4} = \frac{z-7}{5}$

11. A variable plane is parallel to the given plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 0$ and meets the axes in A, B, C. Prove that the circle ABC lies on the cone

$$yz\left(\frac{b}{c} + \frac{c}{b}\right) + zx\left(\frac{c}{a} + \frac{a}{c}\right) + xy\left(\frac{a}{b} + \frac{b}{a}\right) = 0.$$
 [4]

12. Planes through OX and OY include an angle α . Show that their line of intersection lies on the cone $z^2(x^2 + y^2 + z^2) = x^2y^2 \tan^2\alpha$.

Or

Prove that the cone ayz + bzx + cxy = 0 and $\sqrt{ax} + \sqrt{by} + \sqrt{cz} = 0$ are reciprocal.

13. If a, b, c and a', b', c' are reciprocal system of vectors prove that
a, a' + b, b' + c, c = 3. [4]

14. if $\vec{r}_1 = 2t^2\vec{i} + 3(t-1)\vec{j} + 4t^2\vec{k}$ and $\vec{r}_2 = (t-1)\vec{i} + t^2\vec{j} + (t-2)\vec{k}$, show that

$$\int_{0}^{2} (\vec{r}_{1}, \vec{r}_{2}) dt = \frac{4}{3}.$$
 [4]

15. Prove curl (grand ϕ) = 0. [4]

$$1 \text{ If } f = x^2 z i - 2y^3 z^2 j + xy^2 z k \text{ find div } f \text{ and curl } f \text{ at } (1, -1, 1).$$
 [4]

Mathematics II Paper (Math.312), 2070

(Analytical Geometry & Vector Analysis)

Bachelor Level/I Year/ Sc. & Tech. + Hum.

Full Marks: 75

Time: 3 hrs.

Attempt ALL the questions.

GROUP "A"

5×7=35

1. What type of conic section is the hyperbola? Find the coordinates of centre, foci, equation of directrix, eccentricity and latus rectum of the hyperbola $4x^2 - 9y^2 + 8x + 18y - 41 = 0$, [1+6]

OR

Define conjugate hyperbola. Give an example to show that a hyperbola and its conjugate have the same asymptotes. Find the equation to the hyperbola, whose asymptotes are the straight lines x + 2y + 3 = 0 and 3x + 4y + 5 = 0 and which passes through the point (1, -1)

2. Define tangent and normal to a curve. Find the condition that any straight line x + my + n = 0 may touch the conic $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$.

[2+5]

3. What are skew lines and line of shortest distance?

Find the shortest distance between the lines $\frac{x}{2} = \frac{y}{-3} = \frac{z}{1}$ and $\frac{x-2}{3} = \frac{y-1}{5} = \frac{z+2}{2}$.

Also find the equation of the shortest distance. [1+4+2]
 Find the equation of the tangent plane at (α, β, γ) to the conicoid ax² + by² + cz² = 1 and hence write down the equation of the tangent plane at a point (α, β, γ) of the ellipsoid. [5+2]

OR

What is conicoid? Give the condition under which it represents an ellipsoid. Show that six normal's can be drawn to the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ from any given point.

5. Define derivative of a vector function of a scalar variable. Prove that the necessary and sufficient condition for the vector function \vec{a} of a scalar variable to have a constant magnitude is $\vec{a} \cdot \frac{d\vec{a}}{dt} = 0$.

A particle moves along the curve $x = 2 \sin 3t$, $y = 2\cos 3t$, z = 8t. Find the magnitude of the velocity at $t = \pi/3$. [1+4+2]

GROUP "B"

10×4=40

Buchdord evital Yagas Se. & Tenk

Find the equation of the curve 9x² + 4y² + 18x - 16y = 11 referred to parallel axes through (-1, 2).

7. Find the equation to the common tangents of the circle $x^2 + y^2 = 4ax$ and the parabola $y^2 = 4ax$.

OF

Show that the line x + my = n is normal to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ if } \frac{a^2}{z^2} + \frac{b^2}{m^2} = \frac{(a^2 - b^2)^2}{n^2}$

8. Prove that the equation $\frac{\ell}{r} = 1 + e \cos \theta$ and $\frac{\ell}{r} = -1 + e \cos \theta$ represent the same conic.

Find, the equation of the plane through (2, -3, 1) normal to the line joining (3, 4, -1) and (2, -1, 5).

OR

Find the equation of plane through (-1, 1, -1) and (6, 2, 1) normal to the plane 2x + y + z = 5.

- 10. Show that the equation to a right circular cone whose vertex is 0, axis 0X and semivertical angle ' α ' is $y^2 + z^2 = x^2 \tan^2 \alpha$. [4]
- 11. Find the equation of the sphere through the circle $x^2 + y^2 + z^2 = 1$, 2x + 4y + 5z = 6 and touching the plane z = 0. [4]
- 12. If 2r be the distance between two parallel tangent planes to the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \text{ prove that the line through the origin perpendicular to the planes lies on <math>c$ ne $(a^2 r^2)$ $x^2 + (b^2 r^2)$ $y^2 + (c^2 r^2)$ $z^2 = 0$. [4]

Find the equation of the tangent plane at (α, β, γ) to the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

13. Show that :
$$[\vec{\ell} + \vec{m} + \vec{n} + \vec{n} + \ell] = 2[\vec{\ell} + \vec{m} + \vec{n}]$$
. [4]

14. If
$$r = a \cos t i + a \sin t j + a \tan \alpha t k$$
, find

$$\left| \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} \right|$$
 and $\left[\vec{r} \frac{d\vec{r}}{dt} \frac{d^2\vec{r}}{dt^2} \right]$ [4]

Define divergence and curl of a vector function if $\phi = \log(x^2 + y^2 + z^2)$, find 15. curl (grad 6).

Define curl of a vector function. If of be a scalar function prove that curl (grad ϕ) = 0.

OLD COURSE

Attempt ALL the questions.

Group "A" 5×7=35

- Define conic section. When does it become ellipse? Obtain the length of axes, 1 the eccentricity, the coordinates of foci, the length of latus rectum, and the equation of directrices of the ellipse $9x^2 + 25y^2 = 225$.
- State the conditions under which the general equation of second degree may 2. represent (1) a parabola (2) an ellipse (3) a hyperbola. What conic does the equation $2x^2 - 72xy + 23y^2 - 4x - 28y - 48 = 0$ represent? If possible, find the centre and its equation referred to the centre. [1+1+3+2]

Define normal to a curve. Obtain the equation of the normal at any point (x' y') of the conic represented by $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$.

Find the equation of straight line passing through two given points (x1, y1, z1) and (x_2, y_2, z_2) . Find K so that the lines $\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$ and $\frac{x-1}{3k} = \frac{y-2}{2k}$ $\frac{y-5}{1} = \frac{z-6}{-5}$ may be perpendicular to each other. [3+4]

What are coplanar lines? Find the condition that the two lines in symmetrical form are coplanar. Also, show that the lines $\frac{x-1}{2} = \frac{y-2}{2} = \frac{z-3}{4}$; $\frac{x-2}{3} = \frac{y-3}{4}$

 $\frac{y-3}{4} = \frac{z-4}{5}$ are coplanar.

[1+3+3]

5. What are reciprocal system of vectors? Show that the scalar product of any vector of one system with a vector of the other system which does not correspond to it is zero. Find a set of vectors which form a reciprocal system to the set of vectors -i + j + k, i - j + k, i + j - k. [1+2+4] forms with the field or who again to the

Define scalar product of three non-zero vectors. Interpret it geometrically, Show that the position of dot and cross can be interchanged without changing its value. [1+3+3]

Group "B"

Reduce the equation $3x^2 - 2xy + 4y^2 + 8x - 10y + 8 = 0$ by translating the axes into an equation with linear term missing. [4]

Define focal chord of a conic. In any conic, prove that the sum of the reciprocals of two perpendicular focal chord is constant. [1+3] Obtain the polar equation of the conic section in the form $r = \frac{1}{1 + e \cos \theta}$ [4] Prove that the point $x = \frac{a(1-t^2)}{1+t^2}$ and $y = b\left(\frac{2t}{1+t^2}\right)$ is a point of an ellipse, where t is a parameter. [4] 9. Obtain the equation of plane through the intersection of the planes x + 2y + 3z+4 = 0 and 4x + 3y + 2z + 1 = 0 and the origin. [4] Obtain the angle between the two planes represented by $ax^2 + by^2 + cz^2 + 2fyz$ +2gzx + 2hxy = 0.Find the equation of the sphere have the circle $x^2 + y^2 + z^2 = 9$, x - 2y + 2z = 510. as a great circle. Find the equation of the sphere having the circle $x^2 + y^2 + z^2 = a^2$ with vertex at the point (α, β, γ) . 1 = 0 having its generators parallel to the lines x = y = z. If the normal at any point P of the ellipsoid $\frac{X^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{a^2} = 1$ meets the principal 12. planes at G_1 , G_2 , G_3 respectively show that $PG_1: PG_2: PG_3 = a^2: b^2: c^2$. [4] 1.a 1.b 1.c Prove that $[\ell \ m \ n] [a \ b \ c] = m \ .a \ m \ b \ m \ .c$ Show that any vector r may be expressed as 14. $r = (r \cdot a') a$ + (r . b') b + (r . c') cwhere a, b,c are three non-coplanar vectors. [4] Define gradient of a scalar function and divergence of a vector function. Prove that Div $(\phi \ a) = \phi \ div \ a + a$. (grad ϕ), where ϕ is a scalar function of x, y, z. Define divergence and curl of a vector function. If $\phi = \log(x^2 + y^2 + z^2)$, find curl (grad ϕ) Mathematics II Paper (Math. 102), 2070 (New course) (Analytical Geometry & Vector Analysis) Four Year Bachelor Level/Science & Tech. Full Marks: 75 Time: 3 hrs.

74

Group "A" 5×7=35
Find the centre, escentricity, length of axes, length of latus rectum, foci of the

Attempt ALL the questions.

collipse $8(x-1)^2 + 6(y-1)^2 - 1 = 0$.

Find the condition that any straight line $\ell x + my + n = 0$ may touch the conic 2. $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$. Show that x + 4y = 8 touches the conic $x^2 + 4xy + 3y^2 - 5x - 6y + 3 = 0$. [4+3] OR What conic does the equation $12x^2 - 23xy + 10y^2 - 25x + 26y - 14 = 0$ represent? If possible, find the equation referred to the conic. Show that the equation of the plane containing the line $\frac{y}{h} + \frac{z}{c} = 1$; x = 0 and 3. parallel to the line $\frac{x}{a} - \frac{z}{c} = 1$; y = 0 is $\frac{x}{a} - \frac{y}{b} = 1$ and if 2d is the shortest distance between the line, show that $\frac{1}{d^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$. Find the shortest distance between the line $\frac{x+1}{2} = \frac{y-3}{4} = \frac{z-2}{5}$ and $\frac{x-2}{3} = \frac{y+3}{-2} = \frac{z-4}{1}$. Also find the equation of the line of shortest distance. Find the equation of the enveloping cylinder of the sphere $x^2 + y^2 + z^2 - 2x + z^2 +$ 4. 4y - 1 = 0 having its generators parallel to the line x = 2y = z. 5. Define curl of a vector function. Prove that if ϕ is a scalar field, then curl (ϕ a) $= \phi \operatorname{div} a + a \cdot (\operatorname{grad} \phi)$ [1+6] GROUP "B" 10×4=40 If the axes be turned through an angle tan-1 (3), what does the equation 3xy -6. $4\dot{y}^2 = a^2$ becomes. [4] Show that line $\ell x + my = n$ is tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ if $a^2 \ell^2 - \frac{y^2}{b^2} = 1$ $b^2m^2 = n^2$ OR

Find the asymptotes of the hyperbola $3x^2 - 5xy - 2y^2 + 5x + 11y - 8 = 0$ and equation of the conjugate hyperbola. [2+2]

- Prove that in any conic, the semi-latus rectum is a harmonic mean between the segment of any focal chord.
- 9. Find the point where the line joining (1, 2, 3), (3, -1, 4) cuts the plane 3x + 2y + z 2 = 0.
- 10. Obtain the equation of the sphere having the circle $x^2 + y^2 + z^2 + 8y 2z 4 = 0$, x + 2y + z = 2as the great circle. [4]

OR

A plane passes through a fixed point (f, g, h) and cuts the axes at A, B, C.

Prove that the locus of the sphere OABC if $\frac{f}{x} + \frac{g}{y} + \frac{h}{z} = 2$ [4]

11. Show that the angle between lines given by x + y + z = 0 and fyz + gzx + hxy = 0 is $\frac{\pi}{2}$ if f + g + h = 0. [4]

	Find the equation of the cone with vertex at the origin and passes through the curve intersection of $x^2 + y^2 + 3Z^2 - 1$ and $x + y + 2z = 3$. [4]
12.	Show that the plane $3x + 12y - 6z - 17 = 0$ touches the conicoid $3x^2 + dy^2 +$
	$9z^2 + 17 = 0$ and find the point of contact. [4]
13.	How many different type of product among three vectors \vec{a} , \vec{b} , \vec{c} can be made? Prove that $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$. [2+2]
	Prove that $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$. [2+2]
14.	If $\vec{r} = \vec{a} \cos wt + \vec{b} \sin wt$, prove that $\vec{r} \times \frac{d\vec{r}}{dt} = w (\vec{a} \times \vec{b})$ [4]
15.	Define divergent of a vector function.
	If $F = x^2yi + xzj + 2yzk$, find div (curl F). [4]
	OR specific in the property of the contract of
	Define gradient of a scalar field. If $f = ayz^2 + bzx^2 + cxy^2$, find curl (grad f)
	Mathematics II Paper (Math.102), 2071
11/2	(Analytical Geometry & Vector Analysis)
Back	nelor Level (4 Yrs.)/I Year/Science & Tech. Full Marks: 75
4 4	Time: 3 hrs.
Atte	mpt ALL the questions.
net	GROUP "A" 5×7=35
1	Find the nature of the conic represented by the equation
	ar 1 ar 1 an 1 an 1
* 44	OR STATE OF THE ST
13-	Find the centre of the conic $x^2 - 3xy + y^2 + 10x - 10y + 21 = 0$ and what conic
e de la	does the equation represent? [3½ + 3½]
2.	Find the centre, eccentricity, foci and directrices of the hyperbola $9x^2 - 16y^2 +$
12.	18x + 32y - 151 = 0. [2+1+2+2]
3.	Define cylinder. Find the equation of the cylinder whose generators are parallel
1445	to the line $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$ and passing through the curve $x^2 + 2y^2 = 1$,
auto e	z = 0. [1+6]
4.	Define sphere. Find the equation of the sphere which touches the sphere $x^2 + y^2 + z^2 - x + 3y + 2z - 3 = 0$ at the point $(1, 1 - 1)$ and passes through the origin.
5	+61
5.	Define curl of a vector function, prove that
W.	Div. $(\mathbf{a} \times \mathbf{b}) = \mathbf{b}$. (curl \mathbf{a}) $-\mathbf{a}$. (curl \mathbf{b}).
	If $\vec{f} = x^2z\vec{i} - 2y^3z^2\vec{j} + xy^2z\vec{k}$, find div \vec{f} and curl \vec{f} at $(1, -1, 1)$. [3½+3½]
	CROUNTER (372 + 372)
[5]	GROUP "B" 10×4=40
5.	Find the distance of the point $(2, -1, 3)$ from the coordinate axes. Also find its distance from the origin [3+1]

In any conic, prove that the sum of the reciprocals of two perpendicular focal chords is constant. [4] Wase the condition for the second degree equation Prove that the equation $\frac{c}{r} = 1 - e \cos \theta$ and $\frac{c}{r} = e \cos \theta + 1$ represent the same conic. [4] Define plane. Find the equation of the plane through the intersection of the plane 2x + 3y + 10z = 8, 2x - 3y + 7z = 2 and normal to the plane 3x + 3y + 10z = 82v + 4z = 5, with the work is acc [1+3] When will two given lines be coplanar? Prove that the lines 10. $\frac{x-1}{2} = \frac{x-2}{3} = \frac{z-3}{4}$ and 4x - 3y + 1 = 0 = 5x - 3z + 2 are coplanar. Also find · their point of intersection. th of scales were removed sity the [1+2+1] OR providence of the product of the de Find the shortest distance between the lines $\frac{x-2}{2} = \frac{y-1}{3} = \frac{z+3}{4}$ and $\frac{x+3}{4} = \frac{y-2}{5} = \frac{z-1}{3}$. [4] Define cone. Show that a second degree homogeneous equation in x, y, z represents a cone whose vertex is at the origin. [1+3]Find the equation of the cone with vertex at the origin and passes through the curve of intersection of x + y + 2z = 1 and x - y + 2z = 5. [4] Find the equation of the tangent plane at (α, β, γ) to the conicoid $ax^2 + by^2 +$ 12. $cz^2 = 1$ 4 Define vector triple product, of any non-zero vectors a, b, c. Find an 13. expression for $a \times (b \times c)$. [1+3] What do you mean by constant vector? Evaluate $\frac{d}{dt} \left(\frac{r-a}{r^2+a^2} \right)$ 14. 15. Prove that the curl of the linear velocity of a rigid body equals twice the angular velocity of the body. If $\vec{V} = e^{xyz}(\vec{i} + \vec{i} + \vec{k})$. then find curl \vec{V} . Mathematics II Paper (Math. 102), 2072 (Analytical Geometry & Vector Analysis) Bachelor Level (4yrs. prog.) I Year/Science & Tech. Full Marks: 75 Time: 3 hrs. Attempt ALL the questions. 2 - 1 . Codemant and the shift of principles in Group "A" 5×7 = 35 1. Explain the auxiliary circle and the eccentric angle of a point in an ellipse. Find the point at which the line $\ell_X + my + n = 0$ is a normal to the ellipse $\frac{X^2}{a^2} + \frac{Y^2}{b^2} = 1$. Also, find the condition for the line to be a normal to the ellipse.

Show that straight line $\ell x + my = n$ touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ if $a^2 \ell^2 +$

[4]

 Define the tangent and normal to a conic. Find the equation of tangent at my point (x₁, y₁) of the conic.

$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0.$$
 [2+5]

OF

Write the condition for the second degree equation

 $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ to represent different types of conics. If the centre of the hyperbola.

 $f(x, y) = ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ is at (h, k) then prove that the pair of asymptotes are given by f(x, y) = f(h, k) [3.5+3.5]

3. Obtain the expression for the angle between a line with direction ratios ℓ , m, n and a plane ax + by + cz + d = 0. Find the points at

Which the line $\frac{x+1}{-1} = \frac{y-12}{5} = \frac{z-7}{2}$ cuts surface $11x^2 - 5y^2 + z^2 = 0$. [4+3]

Write the equation of a sphere in diameter form. Find the equation of a sphere
that cuts each positive coordinate axes at a unit distance and the radius as small
as possible.

OR

What is a plane section of a sphere? Find the centre and the radius of the circle $x^2 + y^2 + z^2 + 12x - 12y - 16z + 111 = 0 = 2x + 2y + z - 17$. [2+5]

5. Prove that in a scalar triple product, the position of the dot and the cross can be interchanged. If \vec{a} , \vec{b} , \vec{c} are three unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1-}{2}b$ -, find the angles which \vec{a} and \vec{c} if \vec{b} and \vec{c} are not parallel. [2.5+2.5+2.5]

Group "B" 10×4 = 40

- 6. Find the transformed equation of the curve $9x^2 + 4y^2 + 18x 16y = 11$, if the origin is shifted at (-1, 2) but the direction of axes are not changed. [4]
- 7. Find the condition for the line x cos α + y sin α = p will be a tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$. [4]
- 8. If PSP' and QSQ' are two perpendicular focal chords of a conic $\frac{1}{r} = 1 + e \cos q$, prove that $\frac{1}{pp'} + \frac{1}{QQ'}$ is constant, where S is the focus.

OR 4]

Find the equation of tangent at point whose vectional angle is α for the conic $\frac{1}{r} = 1 + e \cos q$.

- 9. Find the equation of the plane passing through the point (1, -2, 3) and perpendicular to the line passing through (3, 4-5) and (1, 2, 3).
- 10. Find the point of intersection of the lines

$$\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8} \text{ and } x-4 = \frac{y+3}{-4} = \frac{z+1}{7}.$$
 [4]

The maintain of manifers on participated and

11. If the section of a cone with vertex at L and guiding curve, the ellipse, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1; z = 0 \text{ by the } xy - \text{plane is a rectangular hyperbola, find the locus of L}.$

OR [4]

Find the equation of the right cylinder that passes through $y^2 = 4ax$, z = 0 and whose generators are parallel to the line x = y = z.

12. Find the equation of the tangent plane at the point (f, g, h) to the conicoid $ax^2 + by^2 + cz^2 = 1$.

OR [4]

If 3x + 12y - 6z = 17 is a tangent plane to the conicoid $3x^2 - 6y^2 + 9z + 2 + 17 = 0$, find the point of contact.

13. If a, b, c are non-coplanar, then show that a + b, b + a are also non-coplanar. [4]

14. For the space curve x = 3t, $y = 3t^2$, $z = 2t^3$, prove that

$$\left[\frac{d\mathbf{r}}{dt}\frac{d^2\mathbf{r}}{dt^2}\frac{d^3\mathbf{r}}{dt^3}\right] = 216.$$
 [4]

15. Find the unit vector normal to the surface $z = x^2 + y^2$ at the point (-1, -2, 5).

OR

For any space vector v prove that

grad (div v) = curl (curl v) +
$$\sum \frac{\partial^2 v^{TM}}{\partial x^2}$$
 [4]

7. Statistics I Paper (Stat.311), 2066

(Descriptive Statistics & Introduction to Probability)
Full Marks: 100

Time: 3 hour
Attempt ALL the questions.

Group "A"

[5×3=15]

Compulsory Question.

Attempt any FIVE questions.

- a) Give the difference between ordinal scale and nominal scale.
- b) Discuss wat you know about the classification and categorization. Write down the formula for estimating the number of classes required.
- c) For a number of 51 observations, the arithmetic mean and standard deviation are 58.5 and 11 respectively. It was found after the calculations were made that the one of the observations recorded as 15 was incorrect. Find the standard deviation of the 50 observations if this incorrect observation is omitted.
- d) Write down the normal equation in fitting the modely $Y = a + bx + cx^2$.
- e) If X and Y sare independent variates, prove that they are uncorrelated, that is r_{xy} = 0. Show by an example that the converse of theorem is not necessarily true.