- 30. Show that the points A, B and C with position vectors $\overrightarrow{i} 2\overrightarrow{j} + 3\overrightarrow{k}$, $2\overrightarrow{i} + 3\overrightarrow{j} 4\overrightarrow{k}$, $-7\overrightarrow{j} + 10\overrightarrow{k}$ respectively are collinear. [Q.N. 10(a), 2058]
- 31. Show that the vectors $2\overrightarrow{i} + 3\overrightarrow{j} 8\overrightarrow{k}$ and $2\overrightarrow{i} + 4\overrightarrow{j} + 2\overrightarrow{k}$ are orthogonal. [Q.N. 3(b), 2057]
- 32. If the position vector of M and N are $3\overrightarrow{i} + \overrightarrow{j} 3\overrightarrow{k}$ and $4\overrightarrow{i} 2\overrightarrow{j} + \overrightarrow{k}$ respectively, find \overrightarrow{MN} and determine its direction cosines. [Q.N. 10(a), 2057] $\left(\overrightarrow{Ans: \overrightarrow{MN}} = \overrightarrow{i} 3\overrightarrow{j} + 4\overrightarrow{k}, \left(\frac{1}{\sqrt{26}}, \frac{-3}{\sqrt{26}}, \frac{4}{\sqrt{26}}\right)\right)$
- 33. A B CD E F is a regular hexagon. Express \overrightarrow{AC} and \overrightarrow{AD} in terms of \overrightarrow{AB} and \overrightarrow{BC} .

 (Ans: $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$, $\overrightarrow{AD} = 2\overrightarrow{BC}$) [Q.N. 4(a), 2057]

6.2 Product of Vectors

- 1. Find the angle between the vectors $2\overrightarrow{i} \overrightarrow{j} + \overrightarrow{k}$ and $\overrightarrow{i} 3\overrightarrow{j} 5\overrightarrow{k}$. (Ans: 90°)
- Define Vector product of two Vectors. Prove by Vector method: sin(A + B) = sinAcosB + cosAsinB.
 6[Q.N.10, 2072'C']
- 3. If $(\overrightarrow{a} + \overrightarrow{b})$ $(\overrightarrow{a} \overrightarrow{b}) = 0$, prove that $|\overrightarrow{a} = |\overrightarrow{b}|$. 2[Q.N.3(c), 2072'D']
 4. Define Vector product of two Vectors. Prove by Vector method that in any triangle
 - ABC, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ 6[Q.N.10, 2072'D']
- 5. If $\overrightarrow{OP} = \overrightarrow{i} + 3\overrightarrow{j} 7\overrightarrow{k}$ and $\overrightarrow{OQ} = 5\overrightarrow{i} 2\overrightarrow{j} + 4\overrightarrow{k}$, find \overrightarrow{PQ} and its direction cosines. $(Ans: 4\overrightarrow{i} 5\overrightarrow{j} + 11\overrightarrow{k}, (\frac{4}{9\sqrt{2}}, \frac{11}{9\sqrt{2}}))$
- 6. Find the area of the triangle determined by the vectors $\overrightarrow{3i} + 4\overrightarrow{j}$ and $-5\overrightarrow{i} + 7\overrightarrow{j}$. (Ans: 20.5 sq. unit)
- Define scalar product of two vectors. Give the geometrical interpretation of the scalar product of two vectors. In any triangle prove vectorically that a² = b² + c² 2bc cos A.
 10.N.10. 2072'E'I
- 8. For what value of m is the pair of vectors $\overrightarrow{i} 2\overrightarrow{j} + 4\overrightarrow{k}$ and $2\overrightarrow{i} 7\overrightarrow{j} + m\overrightarrow{k}$ orthogonal?

 (Ans: m = 3)

 2 [O.N. 3(c), Set 'C' 2071]
- 9. Define vector product of two vectors. Prove by vector method that sin(A + B) = sinAcosB+CosAsinB.

 6 [Q.N. 10, Set 'C' 2071]
- 10. Find a unit vector perpendicular to each of the vectors $3\overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k} \text{ and } 2\overrightarrow{i} 2\overrightarrow{j} + 4\overrightarrow{k}.$ 2 [Q.N. 3(c), Set 'D' 2071] $\left(Ans: \frac{1}{\sqrt{2}}\overrightarrow{i} \frac{1}{\sqrt{3}}\overrightarrow{j} \frac{1}{\sqrt{3}}\overrightarrow{k}\right)$
- Define scalar product of two vectors. Prove by vector method that:
 cos(A + B) = cosA cosB sinA sinB.
 6 [Q.N. 10, Set 'D' 2071]

If $|\overrightarrow{a} + \overrightarrow{b}| = |\overrightarrow{a} - \overrightarrow{b}|$, prove that \overrightarrow{a} is perpendicular to \overrightarrow{b} 12. 2 [Q.N. 3(c), 2070 'C'] Define vector product of two vectors. Using vector method, prove that: 13. 6[Q.N. 10, 2070 'C'] Find the since of the angle between the two vectors 14. $2\overrightarrow{i} - \overrightarrow{i} + \overrightarrow{k}$ and $3\overrightarrow{i} + 4\overrightarrow{i} - \overrightarrow{k}$. 2 [Q.N. 3(c), 2070 'D'] Ans: $\sqrt{\frac{155}{156}}$ 15. Define scalar product of two vectors. 6[Q.N. 10, 2070 'D'] Prove by vector method that : cos (A - B) = cosA cosB + sinA sinB If $(\overrightarrow{a} + \overrightarrow{b}) \cdot (\overrightarrow{a} - \overrightarrow{b}) = 0$, prove that $|\overrightarrow{a}| = |\overrightarrow{b}|$. 2 [Q.N. 3(c), Supp. 2069] 16. Define vector product of two vectors and geometrically interpret it. Also show that 17. $\overrightarrow{a} \times \overrightarrow{b} \neq \overrightarrow{b} \times \overrightarrow{a}$ where \overrightarrow{a} and \overrightarrow{b} are any two non zero vectors. 6 [Q.N. 10, Supp. 2069] Find the area of the parallelogram 18. determined by the vectors $\overrightarrow{i} + 2\overrightarrow{i} + 3\overrightarrow{k}$ and $-3\overrightarrow{i} - 2\overrightarrow{i} + \overrightarrow{k}$ [Q.N. 3(c), Set 'A' 2069] (Ans: 6\sq uints) Define scalar product of two vectors. Prove by the method of vectors that: 19. cos (A-B) = cosA cosB + sinA sinB. 6 [Q.N. 10, Set 'A' 2069] If $\overrightarrow{a} = \overrightarrow{i} + \overrightarrow{j} - 2\overrightarrow{k}$ and $\overrightarrow{b} = 2\overrightarrow{i} - \overrightarrow{j} - \overrightarrow{k}$ are any two vectors, find the cosine of 20. the angle between the two vectors. [Q.N. 3(c), Set 'B' 2069] $\left(Ans: \frac{1}{2}\right)$ Define vector product of two vectors. Interpret the vector product of two vectors 21. geometrically. Prove by vector method that: [Q.N. 10, Set 'B' 2069] Find the area of the triangle determined by the vectors 22. $\overrightarrow{3}$ i +4 j and -5 i +7 j [Q.N. 3(b), 2068] [Ans: 20.5 sq. units] Using vector method prove that: $c^2 = a^2 + b^2 - 2ab \cos C$. 23. [Q.N. 11(b), 2068] Given $\overrightarrow{a} = (3, 1, 2)$ and $\overrightarrow{b} = (2, -2, 4)$, find the projection of \overrightarrow{a} on \overrightarrow{b} . 24 (Ans: \(6) [Q.N. 3(b), 2067] Prove by vector method: Cos (A+B) = Cos A Cos B - Sin A Sin B. [Q.N. 11(a), 2067] 25. For what value of m are the vectors $\overrightarrow{i} - 2\overrightarrow{i} + 4\overrightarrow{k}$ and $2\overrightarrow{i} + 7\overrightarrow{i} + m\overrightarrow{k}$ orthogonal? 26. (Ans: 3) [Q.N. 3(b), 2066] Use vector method to prove that, in any triangle ABC, a = b cos C + c cos B. 27. [Q.N. 11(a), 2066] Find the value of r if the vectors $3\overrightarrow{i} - \overrightarrow{j} - 2\overrightarrow{k}$ and $2\overrightarrow{i} - 2\overrightarrow{i} + r\overrightarrow{k}$ are orthogonal. 28. [Q.N.4(a), 2065] By using vectors, prove that in any \triangle ABC, 29. $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$ [Q.N.11(a), 2065]

[Q.N. 11(a), 2057]

```
Find the area of the triangle determined by the vectors 3\overrightarrow{1} + 4\overrightarrow{1} and -5\overrightarrow{1} + 7\overrightarrow{1}.
  30.
              (Ans: 41 sq. units)
                                                                                                                 [Q.N. 3(b), 2064]
              Using vector method, prove in any triangle, that :
  31.
              b^2 = c^2 + a^2 - 2ca \cos B
                                                                                                                [Q.N. 11(a), 2064]
              If \overrightarrow{i}, \overrightarrow{k} are three mutually perpendicular unit vectors and
  32.
               \overrightarrow{a} = \overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}, \overrightarrow{b} = 2 \cdot \overrightarrow{i} - 3\overrightarrow{j} - \overrightarrow{k}, find the cosine of the angle
                                                                                                                 [Q.N. 4(a), 2063]
               Ans.: cos-1 7
 33.
              Using vector method, prove in any triangle that:
              a = b CosC + c CosB
                                                                                                               [Q.N. 11(a), 2063]
              Find the area of the parallelogram determined by the vectors
 34.
               \overrightarrow{i} + 2 \overrightarrow{j} + 3 \overrightarrow{k} and -3 \overrightarrow{i} - 2 \overrightarrow{j} + \overrightarrow{k}
                                                                                                                [Q.N. 3(b), 2062]
             (Ans.: 6\sq. unit)
             Prove vectorically that : Cos (A-B) = CosA Cos B + SinA SinB
 35.
                                                                                                              [Q.N. 11(a), 2062]
             Find a unit vector perpendicular to 2\vec{i} + 3\vec{j} - \vec{k} and \vec{i} + \vec{j} - 2\vec{k}.
 36.
             \left(Ans: \frac{-5}{\sqrt{35}} \overrightarrow{i} + \frac{3}{\sqrt{35}} \overrightarrow{j} - \frac{1}{\sqrt{35}} \overrightarrow{k}\right)
                                                                                                               [Q.N. 3(b), 2061]
             If \overrightarrow{a} and \overrightarrow{b} are two vectors of unit length and \theta is the angle between them. Show
 37.
             that \frac{1}{2} | a - b | = \sin \frac{\theta}{2}
                                                                                                                [Q.N. 4(a), 2061]
38.
             Prove, in any triangle, by vector method that :
             \frac{\text{SinA}}{2} = \frac{\text{SinB}}{b} = \frac{\text{SinC}}{c}
                                                                                                              [Q.N. 11(a), 2061]
             Find the cosine of the angle between the vectors
39.
            2\overrightarrow{i} + \overrightarrow{i} + \overrightarrow{k} and 4\overrightarrow{i} + 3\overrightarrow{j} + 5\overrightarrow{k}
                                                                                                               [Q.N. 3(b), 2060]
             \left(Ans:\frac{8}{5\sqrt{3}}\right)
            Prove by vector method: sin (A - B) = sin A cos B - cos A sin B.
40.
                                                                                                             [Q.N. 11(a), 2060]
41.
            Find the angle between two vectors a = i + j - 2k and b = 2i - j - k.
            (Ans: 60°)
                                                                                                               [Q.N. 4(a), 2059]
            Prove by vector method: Sin(A+B) = Sin A Cos B + Cos A SinB.
42.
                                                                                                             [Q.N. 11(a), 2059]
            Show that the area of the parallelogram determined by:
43.
           \overrightarrow{1} + \overrightarrow{1} - 3\overrightarrow{k} and \overrightarrow{1} - 2\overrightarrow{1} - 3\overrightarrow{k} is \sqrt{1.18} sq. units
                                                                                                              [Q.N. 3(b), 2058]
44.
            Prove by vector method.
            cos(A-B) = cosA cosB + sinA. sinB.
                                                                                                             [Q.N. 11(a), 2058]
45.
            Prove by vector method
```

Cos (A - B) = CosA CosB +SinA SinB

Unit 7: Derivative and its Application

7.1 Continuity and differentiability

1. Show that $\lim_{x\to 0} \frac{\log(1+x)}{x} = 1$ [Q.N. 2(b), 2057]

7.2 Differential Coefficients by definition (by first principle)

- Find, from first principles, the derivative of xinx. [Q.N.11(Or), 2072'C']
- (Ans: 1 + ℓnx)
 2. Find from first principles the derivative of ln cos⁻¹x. [Q.N.11(Or), 2072'D']
- 2. Find from first principles the derivative of ln cos⁻¹x. [Q.N.11(Or), 2072'D'] $\frac{-1}{\sqrt{1-x^2\cos^{-1}x}}$
- 3. Solve: $x \frac{dy}{dx} + y 1 = 0$. 2[Q.N.4(a), 2072'E'] (Ans: x(y - 1) = e)
- Find from first principles the derivative of sinx². [Q.N.11(Or), 2072'E']
- 5. Find from first principle, the derivative of tan-1x. 6 [Q.N. 11(OR), Set 'C' 2071] $\left(\text{Ans: } \frac{dy}{dx} = \frac{1}{1 + x^2} \right)$
- 6. Find from first principle, the derivative of: $\ln(\sin \frac{x}{a})$.

 (Ans: $\frac{d}{dx}(\log \sin \frac{x}{a}) = \frac{1}{a} \cot \frac{x}{a}$)

 6 [Q.N. 11(QR), Set 'D' 2071]
- 7. Find from first principles, the derivative of log (tanx). [Q.N. 11(OR), 2070 'C']

 (Ans: 1/sinx.cosx)
- Find from first principles, that derivative of x^x.
 (Ans: x^x (1 + logx))
- 9. Find from first principles the derivative of logcos⁻¹x. (Q.N. 11(OR), Supp. 2069]

 (Ans: -1 Cos-1x 1 x)
- 10. Find from first principle, the derivative of sin(logx)

 [Q.N. 11(QR), Set 'A' 2069]

 (Ans: \frac{1}{c} \cos(logx))
- 11. Find from first principle, the derivative of e^{sinx}. [Q.N. 11(OR), Set 'B' 2069]

 (Ans: cosx. e^{sinx})
- 12. Find from first principle, the derivative of : e^{sinx} [Q.N. 10(b), 2068] (Ans: cosx e sinx)
- 13. Find from first principles, the derivative of : $\sin^{-1}x$. [Q.N. 10(b), 2067] $\left(Ans: \frac{1}{\sqrt{1-x^2}}\right)$
- 14. Find the derivative of Sin (log x) from first principles. [Q.N. 10(b), 2066]

 (Ans: \frac{1}{x} \cos (log x)
- Find from first principles, the derivative of a*. [Q.N.10(b), 2065]
 (Ans: a*loga)
- Find from first principles, the derivative of log sinx. [Q.N. 10(b), 2064]
 (Ans: cotx)

Viot	hematices.	141

-		Mathematices 141
17.	Find from first principles, the derivative of log tanx	[Q.N. 10(b), 2063]
	(Ans.: 1 sinx.cosx)	
18.	Find from first principles, the derivative of tan-1x.	[Q.N. 10(b), 2062]
	$\left(Ans.: \frac{1}{1+x^2} \right)$	
19.	Find from first principles, the derivative of $e^{\sqrt{x}}$.	[Q.N. 10(b), 2061]
	$\left(Ans: \frac{1}{2\sqrt{x}}e^{\sqrt{x}}\right)$	Tifani in the
20.	Find from first principles, the derivative of esinx	[Q.N. 10(b), 2060]
	(Ans: cosx.esinx)	
21.	Find from first principles, the derivative of e ^{tanx} .	[Q.N. 10(b), 2058]
	(Ans: sec ² x e ^{tanx})	
7.3	Derivative of hyperbolic function	
1.	Find the derivative of: $\left(\cosh \frac{x}{a}\right)^{\log x}$	[Q.N. 2(b), 2068]
	$\left[\text{Ans:} \left(\cosh \frac{x}{a} \right)^{\log x} \left(\frac{1}{a^2} \tanh \frac{x}{a} \log x + \frac{1}{x} \log \cosh \frac{x}{a} \right) \right]$	
2.	Find the derivative of $x^{\cosh \frac{x}{a}}$.	[Q.N. 2(b), 2067]
	$\left[\text{Ans: } x^{\cos h_{\overline{a}}^{\underline{X}}} \left[\frac{\cos h_{\overline{a}}^{\underline{X}}}{x} + \frac{\log x \sin h_{\overline{a}}^{\underline{X}}}{a} \right] \right]$	
3.	Find the derivative of 2 $\tanh^{-1}\left(\tan\frac{1}{2}x\right)$	[Q.N. 2(b), 2066]
4.	(Ans: secx) Find the derivative of Arc tan Sin hx.	[Q.N.2(b), 2065]
	$\left(Ans: \frac{coshx}{1 - sinh^2x}\right)$	[santala), zood
5.	Find the derivative of : $\left(\sin h \frac{x}{a}\right)^{x^2}$	[Q.N. 2(b), 2064]
	$\left(\operatorname{Ans:} \left(\sin \frac{x}{a}\right)^{x^2} \left[\frac{x^2}{a} \cot \frac{x}{a} + 2x \log \sinh \frac{x}{a} \right] \right)$	2 1 8 W
6.	Find the derivative of $x^{Cosh^2 \frac{x}{a}}$.	[Q.N. 2(b), 2063]
	$\left(Ans.: x \frac{\cosh^2 \frac{x}{a}}{a} \left(\frac{1}{x} \cdot \cosh^2 \frac{x}{a} + \frac{1}{a} \cdot \log x \cdot \sin \frac{2x}{a}\right)\right)$	
7.	Find the derivative of log(sinh*/a)	[Q.N. 2(b), 2062]
- Marie	$\left(Ans.: \frac{1}{a} coth \frac{X}{a}\right)$	
	· Or	

8.	Find the derivative of : x ^{cos h x/a}	[Q.N. 2(b), 2061]
	$\left(\text{Ans: } x \right)^{\frac{X}{a}} \left[\frac{\cosh x/a}{x} + \frac{\log x \sinh x/a}{a} \right]$	
9.	Find the derivative of 2 tan ⁻¹ $\left(\tanh \frac{x}{2}\right)$	[Q.N. 2(b), 2060]
	(Ans: Sechx)	
10.	Find the derivative of e ^{cosh-1} x .	[Q.N. 2(a), 2059]
	$\left(Ans: \frac{1}{\sqrt{x^2 - 1}} e^{\cosh^{-1} x}\right)$	
11.	Find, from definition, the derivative of e ^{tanx} .	[Q.N. 10(b), 2059]
286	(Ans: sec²xetanx)	
12.	Find the derivative of x ^{Coshx}	[Q.N. 2(b), 2058]
	$\left(Ans: x^{\frac{\cosh x}{x}} + \log x \sinh x\right)$	
13.	Find the derivative of $\left(\sinh \frac{x}{a} + \cosh \frac{x}{a}\right)^{nx}$	[Q.N. 10(b), 2057]
	$\left(\text{Ans: } n\left(\sinh\frac{x}{a} + \cosh\frac{x}{a}\right)^{\text{NX}} \left[\frac{x}{a} + \log\left(\sinh\frac{x}{a} + \cosh\frac{x}{a}\right)\right]\right)$	
7.4 1.	Tangent and Normal Find the points on the circle $x^2 + y^2 = 16$ at which the tangents (Ans: $(0, 4), (0, -4)$)	are parallel to X-axis. 2[Q.N.3(a), 2072'E']
2.	Find the points on the curve $y = x^3-3x^2+1$ where the tangent is pa	
3.	Find the equation of the tangent to the curve $y = 2x^3 - 5x^2 + 8$ at (Ans: $4x - y - 4 = 0$)	(2, 4) 2 [Q.N. 3(a), 2070 'D']
4.	At what angle does the curve $y(1+x) = x$ cut the x-axis?	[Q.N. 5(c), 2068]
	$\left(\operatorname{Ans}:\frac{\pi}{4}\right)$	
5.	Find the angle of intersection between the curves $y = x^2$ and $6y = 7 - x^3$ at $(1, 1)$.	[Q.N. 2(c), 2067]
	$\left(\text{Ans: } \tan^{-1}\left(\pm\frac{3}{2}\right)\right)$	
6.	Find the angle of intersection of the curves $y^2 = x^3$ and $y = 2x$ at 1	the point (0, 0).
	(Ans: $tan^{-1}(\pm 2)$ at (0, 0) $tan^{-1}(\pm \frac{1}{7})$ at (4, 8)	[Q.N. 2(c), 2066]
7.	Find where the tangent is parallel to the x-axis for the curve $y = x^3 - 3x^2 - 9x + 15$.	[Q.N.2(c), 2065]
	(Ans: (-1, 20) and (3, -12))	
8.	Find the points on the curve $y = x^3 - 3x^2 + 1$ where the tangents (Ans: (0, 1), (2, -3))	are parallel to x-axis. [Q.N. 2(c), 2064]
9.	Find the angle of intersection of the curves	[Q.N. 2(c), 2062]
	$4y = x^2 + 12$ and $y^2 = 8x$ at $(2,4)$ (Ans.: 0°)	
10.	Find the slope and inclination with the x-axis of the tangent of y	$y = -3x - x^4$ at $x = -1$.
	(Ans: 1 and $\frac{\pi}{4}$)	[Q.N. 2(c), 2061]

[Q.N. 5(c), 2060] (Ans: (0, 0), (-2, -4) and (2, -4) Find the slope and inclination with x -axis of the tangent of: $x^2 + y^2 = 36$ at (0.6). (Ans: 0 and 0°) [Q.N. 5(c), 2058] 13. Find the slope and inclination with X -axis of the tangent of the curve $2v = 2 - x^2$ at x = 1. [Q.N. 5(c), 2057] Ans: $-1, \frac{3\pi}{4}$ 7.5 L Hospital's rule, Roll's Theorem & Mean Value Theorem Evaluate, using L' Hospitals rule: Lt tanax x→0 tanbx 1. 2[Q.N.3(a), 2072'C'] Ans: a 2. State Rolle's theorem. Verify Rolle's theorem for the functions $f(x) = 2x^3 - 3x + 1$ in 6[Q.N.11, 2072'C'] Using L' Hospitals rule, evaluate: $\underset{x\to 0}{\text{Lt.}} \frac{e^x - x - 1}{x^2}$. 3. 2[Q.N.3(b), 2072'D'] $\left(\text{Ans:} \frac{1}{2}\right)$ State Mean Value theorem. Verify the mean value theorem for the function $f(x) = \sqrt{x^2 - 4}, x \in [2, 4].$ 6[Q.N.11, 2072'D'] (Ans: $c = \sqrt{6}$)

Find the points on the curve $4y = x^4 - 8x^2$ where the tangents are paralleled to the x-

5. State Rolle's theorem. What is the geometrical interpretation of Rolle's theorem. Verify Rolle's theorem for the function $f(x) = \sqrt{1 - x^2}$, $x \in [-1, 1]$. 6[Q.N.11, 2072'E'] (Ans: c = 0)

State mean value theorem. Interpret it geometrically. Verify the mean value theorem 6. for the function f(x) = (x - 1)(x - 2) (x - 3) in [1, 4]. 6 [Q.N. 11, Set 'C' 2071]

7. Using L Hospital's rule, evaluate:

11.

axis.

lim ex+e-x- 2cosx 2 [Q.N. 3(a), Set 'D' 2071] $x \rightarrow 0$ sin2x [Ans: 1]

- State Rolle's theorem. Interpret it geometrically. Verify Rolle's theorem for the function 8. $f(x) = x(x-3)^2$ for $x \in [0, 3]$. 6 [Q.N. 11, Set 'D' 2071]
- tan x xUsing L Hospital's rule, evaluate: $x \to 0$ $x - \sin x$ 9. 2 [Q.N. 3(a), 2070 'C'] [Ans: 2]
- 10. State Rolle's theorem. Interpret it geometrically. Verify Rolle's theorem for the function $f(x) = x(x-3)^2$ for $x \in [0, 3]$. 6 [Q.N. 11, 2070 'C'] [Ans: C = 1]
- 11. State mean value theorem. Interpret it geometrically. Verify mean value theorem for the function $f(x) = x(x - 1)^2$ in [0, 2]. 6 [Q.N. 11, 2070 'D'] Ans: $c = \frac{4}{2}$
- Evaluate, using L'Hospital rule $x \to 0$ Lt $\frac{e^x + e^{-x} 2\cos x}{\sin^2 x}$ 12. [Q.N. 3(a), Supp. 2069]2 [Ans: 1]

13. Using mean value theorem, find a point on the parabola $y = (x - 3)^2$ where the tangent is parallel to the chord joining the points (3, 0) and (4, 1).

$$\left(\text{Ans: } \frac{7}{2}, \frac{1}{4}\right)$$

6 [Q.N. 11, Supp. 2069]

14. Using L Hospital's rule, evaluate: $\lim_{x \to 0} \frac{e^x - x - 1}{x^2}$

[Q.N. 3(a), Set 'A' 2069]

 $\left(Ans: \frac{1}{2}\right)$

- State mean value theorem. Interpret it geometrically. Verify mean value theorem for the function f(x) = x³ + x² - 6x in [-1, 4].
 6 [Q.N. 11, Set 'A' 2069]
- 16. Using L Hospital's rule, evaluate:

$$\lim_{x \to 0} \frac{x - \sin x}{x^3}$$

[Q.N. 3(a), Set 'B' 2069]

$$\left(\text{Ans:}\frac{1}{6}\right)$$

17. State mean value theorem. Interpret it geometrically. Verify mean value theorem for the function f(x) = (x-1)(x-2)(x-3) in [1,4]. [Q.N. 11, Set 'B' 2069]

Unit 8: Antiderivatives

1. Evaluate: $\int \frac{dx}{1 - 2\cos x}$

2[Q.N.3(b), 2072'C']

$$\left(\operatorname{Ans:} \frac{1}{\sqrt{3}} \log \frac{\sqrt{3} \tan \frac{x}{2} - 1}{\sqrt{3} \tan \frac{x}{2} + 1} + C\right)$$

2. Evaluate: $\int \frac{dx}{(x-2)^2 (x-3)^3}$

4[Q.N.7(a), 2072'C']

$$\left(\text{Ans:} -\frac{1}{2} \left(\frac{x-2}{x-3}\right)^2 + 3 \left(\frac{x-2}{x-3}\right) - \log \frac{x-2}{x-3} - \frac{x-3}{x-2} + C\right)$$

3. Compute the integral $\int \frac{\coth x \, dx}{\sinh x - 9 \, \text{cosech}x}$

2[Q.N.3(a), 2072'D']

$$\left(\text{Ans: } \frac{1}{6}\log\frac{\sinh x - 3}{\cosh x + 3} + c\right)$$

4. Evaluate: $\int \frac{dx}{(x-1)^2 (x-2)^3}$

4[Q.N.7(a), 2072'D']

$$\left(\text{Ans:} -\frac{1}{2} \left(\frac{x-1}{x-2}\right)^2 + 3 \left(\frac{x-1}{x-2}\right) - 3 \log \left(\frac{x-1}{x-2}\right) - \frac{x-2}{x-1} + c\right)$$

5. Evaluate: $\int \frac{dx}{\sqrt{(x-\alpha)(x-\beta)}} (\beta > \alpha)$

2[Q.N.3(b), 2072'E']

(Ans: $2\log(\sqrt{x-\alpha} + \sqrt{x-\beta}) + c$)

6. Evaluate:
$$\int \frac{dx}{2 + 3\cos x}$$
.

4[Q.N.7(a), 2072'E']

$$\left(\text{Ans:} \frac{1}{\sqrt{5}} \frac{\log \sqrt{5} + \tan \frac{x}{2}}{\sqrt{5} - \tan \frac{x}{2}} + C\right)$$

7. Evaluate:
$$\int \frac{6x+1}{x^2+9} dx.$$

2 [Q.N. 3(b), Set 'C' 2071]

(Ans: 3 log (x² + 9) +
$$\frac{1}{3}$$
 tan-1 $\frac{x}{3}$ + C)

4 [Q.N. 7(a), Set 'C' 2071]

Evaluate:
$$\int \frac{dx}{1-2\cos x}$$

$$\left(\text{Ans: } \frac{1}{\sqrt{3}} \log \left(\frac{\sqrt{3} \tan \frac{x}{2} - 1}{\sqrt{3} \tan \frac{x}{2} + 1} \right) + C \right)$$

[Ans: log (x + a + \sqrt{x^2 + 2ax})+ C

9. Evaluate:
$$\int \frac{dx}{\sqrt{2ax+x^2}}$$

2 [Q.N. 3(b), Set 'D' 2071]

10. Evaluate:
$$\int \frac{dx}{1-3\sin x}$$

4 [Q.N. 7(a), Set 'D' 2071]

Ans:
$$\left(\frac{1}{2\sqrt{2}}\log\frac{\tan\frac{x}{2} - 3 - 2\sqrt{2}}{\tan\frac{x}{2} - 3 + 2\sqrt{2}} + C\right)$$

11. Evaluate:
$$\int \frac{2x+3}{4x^2+1} dx$$

2 [Q.N. 3(b), 2070 'C']

(Ans:
$$\frac{1}{4} \log (4x^2 + 1) + \frac{3}{2} \tan^{-1} 2x + C$$
)

12. Evaluate: $\int \frac{dx}{2 + \cos x}$

4 [Q.N. 7(a), 2070 'C']

$$\left(\text{Ans:} \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{\tan^{-1} \frac{x}{2}}{\sqrt{3}}\right) + C\right)$$

13. Evaluate:
$$\int \frac{dx}{\sqrt{(x-\alpha)(x-\beta)}}, (\beta>\alpha)$$

2 [Q.N. 3(b), 2070 'D']

(Ans:
$$2\log(\sqrt{x-\alpha} + \sqrt{x-\beta}) + C$$
)

4 [Q.N. 7(a), 2070 'D']

14. Evaluate:
$$\int \frac{dx}{1 + 2\sin x}$$

$$\left(\text{Ans: } \frac{1}{\sqrt{3}}\log\frac{\tan\frac{x}{2}+2-\sqrt{3}}{\tan\frac{x}{2}+2+\sqrt{3}}+C\right)$$

15. Evaluate:
$$\int \frac{dx}{1 + \sin x + \cos x}$$
 2 [Q.N. 3(b), Supp. 2069]
$$\left(\text{Ans: log} \left(1 + \tan \frac{x}{2} \right) + c \right)$$

16. Evaluate:
$$\int \frac{x^2}{x^4 - 2x^2 - 15} dx$$
. 4 [Q.N. 7(a), Supp. 2069]
$$\left(\text{Ans; } \frac{\sqrt{3}}{8} \tan^{-1} \frac{x}{3} + \frac{\sqrt{5}}{16} \log \frac{x - \sqrt{5}}{x + \sqrt{5}} + C \right)$$

17. Evaluate:
$$\int \frac{dx}{\sqrt{2ax-x^2}}$$
. [Q.N. 3(b), Set 'A' 2069]

18. Evaluate:
$$\int \frac{dx}{3\sin x - 4\cos x}$$
 [Q.N. 7(a), Set 'A' 2069]
$$\left(Ans: \frac{1}{5} \frac{\tan \frac{x}{2} - \frac{1}{2}}{\tan \frac{x}{2} + 2} + c\right)$$

19. Evaluate:
$$\int \frac{dx}{e^x + e^{-x}}$$
. [Q.N. 3(b), Set 'B' 2069]
(Ans: $tan^{-1} e^x + c$)
20. Evaluate: $\int \frac{dx}{2 + 3\cos x}$. [Q.N. 7(a), Set 'B' 2069]

$$\left(Ans: \frac{1}{\sqrt{5}} \log \frac{\sqrt{5} + \tan \frac{x}{2}}{\sqrt{5} - \tan \frac{x}{2}} + C\right)$$

21. Evaluate:
$$\int \frac{dx}{\sqrt{2ax-x^2}}$$
 [Q.N. 3(a), 2068]
 $\left(Ans: sin^{-1}\frac{x-a}{a} + C\right)$

22. Evaluate:
$$\int \frac{dx}{1 + \sin x + \cos x}$$
 [Q.N. 11(b), 2068]
$$\left(Ans: log\left(1 + tan\frac{x}{2}\right) + C\right)$$

23. Evaluate:
$$\int \frac{1}{x^2} e^{-\frac{1}{x}} dx$$
 [Q.N. 3(a), 2067]

24. Evaluate:
$$\int \frac{dx}{1+2\sin x}$$
 [Q.N. 11(b), 2067]

$$\left(\text{Ans: } \frac{1}{\sqrt{3}} \log \frac{\tan \frac{x}{2} + 2 - \sqrt{3}}{\tan \frac{x}{2} + 2 + \sqrt{3}} + C\right)$$

25. Integrate:
$$\int \frac{dx}{\sqrt{2ax + x^2}}$$
 [Q.N. 3(a), 2066] (Ans: $\log(x + a) + \sqrt{x^2 + 2ax} + c$)

26. Integrate: $\int \frac{dx}{(x + 2)(x + 3)^2} dx$ [Q.N. 11(b), 2066] (Ans: $4\log(x + 2) - 3\log(x + 3) + \frac{9}{x + 3} + c$)

27. Evaluate: $\int \frac{dx}{e^x + e^{-x}}$ [Q.N.3(a), 2065] (Ans: $\tan^{-1}(e^x) + c$)

28. Integrate: $\int \frac{dx}{3 + 4 \cos hx}$ [Q.N.11(b), 2065] (Ans: $\frac{2}{\sqrt{7}} \tan^{-x} \frac{\tan h\frac{x}{2}}{\sqrt{7}} + c$)

29. Evaluate: $\int \frac{dx}{x^2 - 16}$ [Q.N. 3(a), 2064] (Ans: $\log \frac{x - 4}{x^2 - 16} + C$)

30. Integrate: $\int \frac{\cos x - \sin x}{\sqrt{\sin 2x}} dx$ [Q.N. 11(b), 2064] (Ans: $\log \{(\sin x + \cos x) + \sqrt{\sin 2x}\} + c$)

31. Integrate: $\int \frac{dx}{1 + \sin x + \cos x}$ (Q.N. 11(b), 2063] (Ans: $\log (1 + \tan \frac{x}{2}) + C$)

32. Integrate: $\int \frac{dx}{\sqrt{2ax - x^2}}$ [Q.N. 3(a), 2062] (Ans:: $\sin^{-1} \frac{x - a}{a} + C$)

33. Integrate: $\int \frac{dx}{\sqrt{3ax - x^2}}$ [Q.N. 11(b), 2063] (Ans:: $2 \log \left[\tan \left(\frac{x}{2} + \frac{\pi}{8} \right) \right] + C$)

34. Evaluate: $\int \sqrt{\frac{1 + x}{1 - x}} dx$ [Q.N. 3(a), 2061]

35. Find the value of :
$$\int \frac{dx}{3 \sin x - 4 \cos x}$$

[Q.N. 11(b), 2061]

$$\left(Ans: \frac{1}{5} log \frac{Tan \frac{x}{2} - \frac{1}{2}}{Tan \frac{x}{2} + 2} + C\right)$$

36. Evaluate:
$$\int \frac{dx}{\sqrt{a^2 - x^2}}$$

[Q.N. 3(a), 2060]

Ans:
$$\sin^{-1}\frac{X}{a}+C$$

37. Find the value of :

$$\int \frac{\sin x \cdot \cos x}{(\sin x + \cos x)^2} dx$$

[Q.N. 11(b), 2060]

$$\left(Ans: -\frac{1}{2} \frac{1}{(Tanx+1)} + C\right)$$

38.
$$\int \frac{dx}{a + b \cos x} a < b.$$

[Q.N. 11(b), 2059]

$$\left(Ans: \frac{1}{\sqrt{b^2 - a^2}} log \left(\frac{\sqrt{b+a} + \sqrt{b-a} tan \frac{x}{2}}{\sqrt{b+a} - \sqrt{b-a} tan \frac{x}{2}} \right) + C \right)$$

39. Prove that:
$$\int \frac{dx}{\sqrt{a^2 \cdot x^2}} = \sin^{-1} \frac{x}{a} + c.$$

[Q.N. 3(a), 2058]

40. Integrate:
$$\int \sqrt{\frac{1+x}{1-x}} dx$$
.
 $(Ans: -\sqrt{1-x^2} + sin^{-1}x + c)$

[Q.N. 11(b), 2058]

41. Prove:
$$\int \text{Cosecx dx=log} \left| \tan \frac{x}{2} \right| + c$$

[Q.N. 3(a), 2057]

42. Integrate:
$$\int \frac{dx}{a + b \cos x}$$
 when a> b.

[Q.N. 11(b), 2057]

$$\left(Ans: \frac{2}{\sqrt{a^2 - b^2}} Tan^{-1} \left(\sqrt{\frac{a - b}{a + b}} tan_2^X \right) + C \right)$$

Unit 9: Differential Equations and their Applications

1. Solve: $\frac{dy}{dx} + \frac{y}{x} = 1$. $\left(\text{Ans: } xy = \frac{x^2}{2} + C \right)$ 2[Q.N.4(a), 2072'C']

[Q.N. 7(b), 2070 'C']

2. Solve:
$$\frac{dy}{dx} = y \tan x - 2 \sin x$$

$$(Ans: y \cos x = \frac{\cos 2x}{2} + C)$$
3. Solve: $xy \frac{dy}{dx} - y^2 = x^2$

$$(Ans: y^2 = 2x^2 (\log x + C))$$
4. Solve: $\frac{dy}{dx} + \frac{1 + \cos 2y}{1 - \cos 2y} = 0$.
$$(Ans: \tan y - y + x = c)$$
5. Reduce the equation $\frac{dy}{dx} + \frac{y}{x} = y^2$ in liner form hence solve it.
$$(Ans: \frac{1}{xy} = -\log x + c)$$
6. Solve: $\frac{dy}{dx} = \frac{y + 1}{x + y + 1}$

$$(Ans: y + 1 = ce^{\frac{y}{x} + 1})$$
7. Solve: $\frac{dy}{dx} = \frac{y + 1}{x + y + 1}$

$$(Ans: \cot(\frac{y}{x}) = \log x + c)$$
8. Solve: $\frac{dy}{dx} = \frac{y + 1}{x - \sin^2 \frac{y}{x}}$

$$(Ans: \cot(\frac{y}{x}) = \log x + c)$$
9. Solve: $\frac{dy}{dx} = \frac{y + 1}{2x^2}$

$$(Ans: \frac{dy}{dx} + \cos xy = x \sin x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \sin x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \sin x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \sin x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \sin x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \sin x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

$$(Ans: \frac{dy}{dx} + \cos xy = x \cos x$$

[Ans: $y = 1 + Ce^{-tan x}$]

17.	Solve: $\frac{dy}{dx} = \frac{y}{x} - \sin^2 \frac{y}{x}$.	[Q.N. 7(b)(OR), 2070 °C']
	$\left(\text{Ans: Cot} \frac{y}{x} = \log x + C\right)$	
18.	Solve: $x^2dy - y^2dx = 0$ (Ans: $y - x = Axy$)	2 [Q.N. 4(a), 2070 'D']
19.	Solve: $(1+x^2) \frac{dy}{dx} + 2xy = 4x^2$.	4 [Q.N. 7(b), 2070 'D']
	(Ans: $(1 + x^2) y = \frac{4}{3} x^3 + C$)	
20.	Solve: $(x^2 + y^2)dy = xydx$ (Ans: $x^2 = 2y^2 \log (yc)$)	[Q.N. 7(b)(OR), 2070 'D']
21.	Solve: $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$.	2 [Q.N. 4(a), Supp. 2069]
	[Ans: $y - x = C(1 + xy)$]	
22.	Solve: $\tan x \frac{dy}{dx} + y = \sec x$	4 [Q.N. 7(b), Supp. 2069]
	[Ans: y sinx = x + C]	
ź 3.	Solve: $\frac{dy}{dx} = \frac{\dot{y} - x + 1}{y - x + 5}$	[Q.N. 7(b)(OR), Supp. 2069]
	[Ans: $x^2 + y^2 - 2xy + 10y - 2x = C$]	AND BUREAU
24.	Solve: $\frac{dy}{dx} = e^{x-y} + x^3 \cdot e^{-y}$	[Q.N. 4(a), Set 'A' 2069]
	$\left(\text{Ans: } e^{c} = e^{c} + \frac{X^{4}}{4} + c\right)$	
25.	Solve: $\tan x \frac{dy}{dx} + y = \sec x$	4 [Q.N. 7(b), Set 'A' 2069]
, r <u>1</u>	(Ans: $ysinx = x + c$)	
26.	Solve: $xy \frac{dy}{dx} = x^2 + y^2$	[Q.N. 7(b)(OR), Set 'A' 2069]
400	(Ans: $y^2 = 2x^2 (\log x + c)$)	10 N 4/-> C-4 IPI 00001
27.	Solve: $e^{x-y} dx + e^{y-x}$. $dy = 0$ (Ans: $e^{2x} + e^{2y} = C$)	[Q.N. 4(a), Set 'B' 2069]
28.	Solve: $(1 + x^2) \frac{dy}{dx} + 2xy = 4x^2$	[Q.N. 7(b), Set 'B' 2069]
	(Ans: $(1 + x^2) y = \frac{4}{3} x^3 + C$)	
29.	Solve: $\frac{dy}{dx} = \frac{y}{x} + \tan \frac{y}{x}$	[Q.N. 7(b)(OR), Set 'B' 2069]
	$\left(\text{Ans: } \sin\left(\frac{Y}{x}\right) = Cx\right)$	
30.	Solve: $x^2dy - y^2dx = 0$	Q.N. 6(c), 2068
30.	(Ans: $y - x = c y$, c is a constant.)	
31.	Solve: $\sin x \frac{dy}{dx} \cos x . y = x \sin x$	[Q.N. 11(b)(Or), 2068
	(Ans: $y + x \cot x - c \csc x = 1$; c is constant.)	
32.	Solve: $xdy + (x+y) dx = 0$	[Q.N. 6(c), 2067
100	$(Ans: 2xy + x^2 = c^2)$	

50. Solve:
$$\frac{dy}{dx} = \frac{x^3 + 1}{y^3 + 1}$$
 [Q.N. 6(c), 2058]
$$\left(Ans: \frac{y^4}{4} + y = \frac{x^4}{4} + x + c\right)$$

51. Solve:
$$\cos^2 x \frac{dy}{dx} + y = 1$$
. [Q.N. 11(b)Or, 2058]

$$\left(Ans: y = 1 + ce^{-tanx}\right)$$

52. Solve:
$$\frac{dy}{dx} = \frac{x^2 + x + 1}{y^2 + y + 1}$$
 [Q.N. 6(c), 2057]

$$\left(Ans: \frac{y^3}{3} + \frac{y^2}{2} + y = \frac{x^3}{3} + \frac{x^2}{2} + x + A\right)$$

53. Solve:
$$\tan x \frac{dy}{dx} + y = \sec x$$
.

[Q.N. 11(b)Or, 2057]

(Ans: ysinx = x + c)

Unit 10: Dispersion, Correlation and Regression

10.1 Measures of dispersions

1. The information about the daily temperature of two cities X and y are as follows:

Average temp. (°F) 84 92
Variance of temp. 16 25

Determine which city has greater consistency in climate. 2[Q.N.4(b); 2072'C']

(Ans: City X)
2. In the distribution of data 20, 25, 30, 36, 32, 43; find standard deviation.

(Ans: 7.39) 2[Q.N.4(b), 2072'D']

3. For a group of 50 items; circle $\Sigma x^2 = 600$, $\Sigma x = 150$ and $m_0 = 1.75$, find the Pearsonian coefficient of skewness. 2[Q.N.4(b), 2072'E'] (Ans: 0.72)

 Calculate the coefficient of Skewness based on mean, mode and standard deviation from the following data:
 Q.N. 8(a), Set 'C' 2071

Wages (in Rs.)	100	110	120	130	140
No. of persons	2	6	10	8	4

(Ans: 0.18) .

5. If n = 10, $\Sigma x = 120$, $\Sigma x^2 = 1530$, find the standard deviation and the coefficients of variation. 2 [Q.N. 4(b), Set 'D' 2071]

[Ans: r = 3, C.V. = 25%]

6. If Σ fx = 110, Σ fx² = 1650, N = 10 and M₀ = 12.45 find the skewness based on mean, mode and standard deviation. 4[Q.N. 8(a), 2070 'C']

[Ans: -0.22]

Consider the following distribution.

	Distribution A	Distribution E		
Arithmetic mean:	100		90	
Median:	90		80	
Standard deviation:	10		10	

Is the distribution A same as the distribution B regarding the degree of variation and skewness?

4[Q.N. 8(a), 2070 'D']

(Ans: Yes, same)

8.	The information	n about the	daily tem		of two cit		B are as follows:	
	Average Tem	perature (F)		84		92	
	Variance of Te				16		25.	
	Determine which					ite.	20.	
	[Ans: A]	, ;	j. 04110. 00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		Q.N. 4(b), Supp. 206	101
9.		standard o	deviation a	and the	coefficier	nt of variat	ion from the following	าต
	distribution.						.N. 8(a), Set 'A' 206	
	Profit (in Rs.)	0-10	10-20	20-30	30-40	40-50	0(4), 001 71 200	,01
	No. of shops	8	13	16	8	5		6
1	(Ans: Rs. 11.8			-10				
10.				nd M. –	12.45 fin	d the ekon	vness based on mea	n
10.	mode and stand			11u 1vi0 -	12.45, 111			
	(Ans: - 0.22)	uaru ueviai	ion.			Į.	I.N. 8(a), Set 'B' 206	9]
11.		oun of indi	iduale ar	n airean k	olow Ein	d out the n	nean and the standar	
11.	deviation.	oup or mun	riuuais ait	e given L	elow. Fil	ia out the h		
	Weight (in kg.	0-10	10-2	0 20-	30 30-	40 40-5	[Q.N. 12(a), 206	ol
	Frquency	12	33	30	15	10	0	
	(Ans: 27, 11.4		100	130	1 10	110		
12.	Consider the fo		ribution					
12.	distribution A	liowing dist	distribution.	n D				
	Arithmetic mea		100	_			0	
	Medium		90				0	
	Standard deviat	tion	10				0	
				stribution	R rena		egree of variation an	d
	skewness ?	JII 71 QUIIIO	uo ino un	Stribution	Diega	unig the u	[Q.N. 12(b), 206	
	(Ans: Yes, sar	me)		U.			[4.11. 12(0), 2001	oj.
13.			n of a se	et of da	ta C.V. =	- 5% σ=	2 and Karl Pearso	n
0.730	coefficient of sk	ewness = 0).5: find th	e mean	of the dat	a.	[Q.N. 4(b), 2067	
	(Ans: 40)		,				[4.11. 4(5), 200	. 1
14.		deviation.	Also prov	ve that the	he root m	ean squar	e deviation is not les	
	than the standa	rd deviation). 1.	, o unat t	1001	our oquar	[Q.N. 12(b), 2067	
15.	Find the standa			following	data:		[4.11. 12(5), 2001	, ,
	x: 10 11	12 13	14		,			
	f: 3 12	18 12	2					
	(Ans: 0.967)						[Q.N. 4(b), 2066	61
16.		fficient of ske	wness from	the follo	wina freau	ency distribu	tion: [Q.N.12(b), 2066	61
				0-40	40-50	50-60	60-70 70-80	~ 1
*		12	18	20	15	10	3 2	
	(Ans: 0.227)							
17.	Calculate Karl F	earson's co	pefficient o	of skewn	ess of the	e data:	[Q.N.12(a), 2065	57
	Marks	above 0	above 1		oove 20	above 3		.,
	Frequency	150	140	-	100	30	80	
	(Ans: 0.89)				100		- 00	
18.		about the v	vages dist	tribution	of the firm	ns A and R	are given below:	
			ragoo alo	Dudoii	Firm A		Firm B	
	No. of workers				500		600	
	Average month				Rs. 586	1	Rs. 575	
	Variable of way		tion		81		100	
	In which firm is			n uniform			[Q.N. 4(b), 2064	17
¥	(Ans: firm A)						[4.11. 7(1), 2004	1

(Ans: firm A)

19.	For a group of 10) items	, Σx =	452	ΣX^2 :	= 24,2	270 ar	nd mo	de =	43.7.	find the	Pearson'
	coefficient of ske	wness.										2(a), 2064
	(Ans: 0.076)			1.9					. 1			
20.	Consider the follo	owing o										
	A -105 10		1		ution	<u>a</u>	Di		tion E			
	Arithmetic mear):			00			90				
	Median:	0			90.			. 80				
	Standard deviat				0			10)			
	Is the distribution	A sam	e as t	ne ais	stributi	ion B	regar	ding t	he sk	ewne		
21.	(Ans.: Same) Find the standard	Idovial	ion of	the f	allowin	da					[Q.N.	4(b), 2063
	10, 15, 20, 25, 30			rue i	JIIOWII	ig ua	ia.				10 M	4/1-) 0000
	(Ans.: 10)	, 55, 4	,								ĮQ.N.	4(b), 2062
22.	Following are the	marks	ohta	ined	hy tw	n etu	lante	A and	d D in	10+	note of	100 morle
	each.	man	ODIC	inted	by two	o stut	Jenio	۸ ما ا	u D II	101	E515 01	100 mark
	Test:	11	2	3	4	5	6	7	8	19	10	
	Marks of A:	44	80	76	48	52	72	68	56	60	54	
	Marks of B:	48	75	54	60	63	69	72	51	57	66	
	Who is intelligent		110	104	100	100	100	112	101	_		0/-1 0000
	(Ans.: B)										[G.N. I	2(a), 2062
20										3.3		
23.	Find the mean de		trom	mean	of the	follo	wing (data:				
	6, 8, 10, 13 and 5			A							[Q.N.	4(b), 2061
	(Ans: 2.72)											
24.	Find out the mear											4.2
	Variable:	5-10	10	0-15	15-2		20-25	5 2	25-30		30-35	
	Frequency:	2		9	29		54		11		5	
-	(Ans: 23.95 and		int		des C					#1 T 10	[Q.N. 1	2(a), 2061
5.	The median, mo	ode ar	na co	efficie	ent, o	f ske	wnes	s for	a c			
	respectively 17.4,			35. Ca	liculat	e me	an an	d C.V			[Q.N. 1:	2(b), 2061
•	(Ans: 18.45 and				-	ė.						
6.	Find the mean de	viation	from	media	in of th	ne nu	mbers	5, 7,	10, 1	2 and		Snik,
_	(Ans: 1.57)							HD	1 60		[Q.N. 4	1/1.1 0000
	Find the mean an			2 /2332		9 D/A						i(b), 2060
27.	Find the mean an	d S.D.						53 11.				(b), 2060
1.	Wages:	d S.D.	10-2		lowing 10–3		e wag 10–4	53 11.	s.) : 10–5()	10–60	i(b), 2060
7.	. Wages: No. of workers:		10–2 15	20	10–3 33			53 11.		Va	100	
	Wages: No. of workers: (Ans: Mean = 35.	06 and	10–2 15 S.d.	0 = 12.	10–3 33 45)	0	10–4 63	0	10–50 83		100 [Q.N. 12	2(a), 2060
	Wages: No. of workers: (Ans: Mean = 35.	06 and	10–2 15 S.d.	0 = 12.	10–3 33 45)	0	10–4 63	0	10–50 83		100 [Q.N. 12	2(a), 2060
8.	No. of workers: (Ans: Mean = 35. Prove that in a dideviation from the	06 and	10–2 15 <i>I S.d.</i> distrib	20 = 12. oution	10–3 33 45) the s	0 standa	10–4 63 ard de	0 eviatio	10–50 83 on is r	not le	100 [Q.N. 12 ss than [Q.N. 12	2(a), 2060 the mean
8.	No. of workers: (Ans: Mean = 35. Prove that in a dideviation from the	06 and	10–2 15 <i>I S.d.</i> distrib	20 = 12. oution	10–3 33 45) the s	0 standa	10–4 63 ard de	0 eviatio	10–50 83 on is r	not le	100 [Q.N. 12 ss than [Q.N. 12	2(a), 2060 the mean
8.	No. of workers: (Ans: Mean = 35. Prove that in a di	06 and screte mean. variation	10–2 15 1 S.d. distrib	20 = 12. oution	10–3 33 45) the s	0 standa	10–4 63 ard de	0 eviatio	10–50 83 on is r	not le	100 [Q.N. 12 ss than [Q.N. 12 on are 5	2(a), 2060 the mean 2(b), 2060 50.2% and
8.	No. of workers: (Ans: Mean = 35. Prove that in a dideviation from the The coefficient of	06 and screte mean. variation	10–2 15 1 S.d. distrib	20 = 12. oution	10–3 33 45) the s	0 standa	10–4 63 ard de	0 eviatio	10–50 83 on is r	not le	100 [Q.N. 12 ss than [Q.N. 12 on are 5	2(a), 2060 the mean
8. 9.	Wages: No. of workers: (Ans: Mean = 35. Prove that in a di deviation from the The coefficient of 22.8 respectively. (Ans: 11.4456)	06 and screte mean. variation Find th	10–2 15 1 S.d. distrib on and e s.d.	= 12. oution	10–3 33 45) the s	o standa certa	10–4 63 ard de in fre	0 eviatio	10–50 83 on is r	not le	100 [Q.N. 12 ss than [Q.N. 12 on are 5	2(a), 2060 the mean 2(b), 2060 50.2% and
8. 9.	Nages: No. of workers: (Ans: Mean = 35. Prove that in a dideviation from the The coefficient of 22.8 respectively. (Ans: 11.4456) Find the standard	06 and screte mean. variation Find the	10–2 15 1 S.d. distrib on and e s.d.	= 12. oution	10–3 33 45) the s	o standa certa	10–4 63 ard de in fre	0 eviatio	10–50 83 on is r	not le	100 [Q.N. 12 ss than [Q.N. 12 on are 5 [Q.N. 4	2(a), 2060 the mean 2(b), 2060 50.2% and 4(c), 2059
9. 0.	Wages: No. of workers: (Ans: Mean = 35. Prove that in a di deviation from the The coefficient of 22.8 respectively. (Ans: 11.4456)	06 and screte mean. variation Find the	10–2 15 1 S.d. distrib on and e s.d.	= 12. oution	10–3 33 45) the s	o standa certa	10–4 63 ard de in fre	0 eviatio	10–50 83 on is r	not le	100 [Q.N. 12 ss than [Q.N. 12 on are 5 [Q.N. 4	2(a), 2060 the mean 2(b), 2060 50.2% and

Write the expressions for the first four central moment and for β_2 . Hence show that for a discrete distribution, $\beta_2 \ge 1$. [Q.N. 12(b), 2057]

Ans:
$$\mu_1 = 0$$
, $\mu_2 = \frac{\sum x^2}{N}$, $\mu_3 = \frac{\sum x^3}{N}$, $\mu_4 = \frac{\sum x^4}{N}$, $\beta_2 = \frac{\mu_4}{\mu_2}$

10.2 Correlation

Define correlation. Find Karl Pearson's coefficient of correlation of the marks of the following distribution.

					4[W.IV.0(d), 2014
· X	20	30	40	50	60
Y	. 50	46	30	24	8

(Ans: -0.937)

2. If n = 15, σ_X = 3.2, σ_V = 3.4 and $\Sigma(X - \overline{X})(Y - \overline{Y})$ = 122, find the correlation coefficient between the two variables. 2 [Q.N. 4(b), Set 'C' 2071] (Ans: 0.75)

Calculate Karl Pearson's correlation coefficient between the two variables height (in 3. cms) and weight (in kg) from the data gives below: 4 [Q.N. 8(a), Set 'D' 2071] [Ans: 0.51]

Height	160	162	165	161	163
Weight	63	62	64	60	61

If $\Sigma (X - \overline{X})^2 = 40$, $\Sigma (Y - \overline{Y})^2 = 63$ and $\Sigma (X - \overline{X})(Y - \overline{Y}) = 35$, find the correlation 4. coefficient between the two variables. 2 [Q.N. 4(b), 2070 'C'] [Ans: 0.697]

If n = 10, $\Sigma X = 60$, $\Sigma Y = 60$, $\Sigma X^2 = 400$, $\Sigma Y^2 = 580$ and $\Sigma XY = 415$, find the correlation 5. coefficient between the two variables. 2.[Q.N. 4(b), 2070 'D'] (Ans: 0.59)

Find Karl Pearsons' coefficient of correlation of the marks of the following two group of 6. students 4 [Q.N. 8(a), Supp. 2069]

[Ans: -0.937]

X.	20	30	40	50	60
Υ	50	46	30	24	8.

7. Calculate the correlation coefficient between two variables from the following data: $\Sigma x^2 = 114$, $\Sigma y^2 = 422$, and $\Sigma xy = 174$ [Q.N. 4(b), 2068] [Ans: 0.793)

8. If the covariance between the variable x and y is 18 and the variances of x and y are 16 and 81 respectively, find the coefficient of correlation between them. (Ans: 0.5)

[Q.N.4(b), 2065] From the following table, calculate the coefficient of correlation by Karl Pearson's

9. method. [Q.N. 12(b), 2063] X: 10 8

9 11

Arithmetic means of X and Y series are 6 and 8 respectively. (Ans.: - 0.92)

Prove that the correlation coefficient between two variables lies between -1 and +1. 10. [Q.N. 12(b), 2062]

Calculate Karl Pearson's coefficient of correlation from the following data: 11.

X:	12	9	8	10	11	13	7	
y:	14	8	6	9	11	12	3	

(Ans: 0.95) [Q.N. 12(b), 2059]

12. Prove that the coefficient of correlation lies between-1 and 1. [Q.N. 12(b), 2058] 13.

Calculate r_{yy} if $\Sigma x^2 = 114$; $\Sigma y^2 = 442$; $\Sigma xy = 174$. [Q.N. 4(b), 2057] (Ans: 0.793)

10.3 Regression

- 1. Define regression and lines of regression. Find the correlation coefficients between the two variables when $b_{xy} = 1.8$ and $b_{yx} = 0.35$. 4[Q.N.8(a), 2072'C'] (Ans: 0.79)
- The regression coefficients of x on y and y on x are 0.84 and 0.32 respectively. if the
 arithmetic means of x and y series are 42 and 26 respectively, find two equations of
 lines of regression.

(Ans: y = 0.32x + 12.56, x + 0.84y + 20.16)

Find the regression equation of y on x when:

$$\Sigma x = 15$$
, $\Sigma y = 25$, $\Sigma x^2 = 55$, $\Sigma y^2 = 140$, $\Sigma xy = 78$, $n = 5$.

(Ans: V = 0.3x + 4.1)

[Q.N. 4(b), Set 'A' 2069]

 The regression coefficient of y on x is 0.32. If the arithmetic means of x and y series are 42 and 36 respectively, find the regression equation of y on x.

(Ans: 0.32x - y - 6 = 0)

[Q.N. 4(b), Set 'B' 2069]

Unit 11: Probability

11.1 Probability

In rolling a pair of dice, determine the probability of obtaining a sum of 10.

(Ans: 1/12)

2[Q.N.4(c), 2072'C']

 In a draw of a card from well shuffled deck of 52 cards what is the probability that it is a king or a queen?
 2[Q.N.4(c), 2072'D']

 $\left(\text{Ans:} \frac{2}{13}\right)$

3. Two dice are rolled once. What is the probability of getting a total of 8 or 7?

 $\left(\text{Ans:} \frac{11}{36}\right)$

2[Q.N.4(c), 2072'E']

4. The chance that A can solve the problem is $\frac{3}{5}$ and the chance that B can solve the problem is $\frac{2}{3}$. Find the probability that the problem is solved. 2[Q.N. 4(c), Set 'C' 2071]

Ans: 13

 Two coins are tossed simultaneously. Find the sample space. Find the probability that both are heads.
 [Q.N. 4(c), Set 'D' 2071]

[Ans: S ={HH, HT, TH, TT}, P(HH) = $\frac{1}{4}$]

A class consists of 60 boys and 40 girls. If two students are chosen at random, what is
the probability that one is boy and one girl?
 2 [Q.N. 4(c), 2070 'C']

 $\left(\text{Ans:} \frac{16}{33}\right)$

 A card is drawn from a well-shuffled back of 52 cards. What is the probability that it is a king or a Diamond?
 2 [Q.N. 4(c), 2070 'D']

(Ans: 4)

- 8. Two dice are rolled simultaneously. What is the probability of turning the same digit in both dice? 2 [Q.N. 4(c), Supp. 2069] $\left(\text{Ans:}\,\frac{1}{6}\right)$
- From 20 tickets marked from 1 to 20, one is drawn at random. Find the probability that it is a multiple of 4 or 5. [Q.N. 4(c), Set 'A' 2069]
 (Ans: ²/_E)
- A bag contains 5 red and 6 white balls. Two balls are drown at random. Find the probability that (i) both are red (ii) both are of the same colour. [Q.N.8(b), Set 'B' 2069]
 (a) 2/11 (ii) 5/11
- 11. A card is drawn at random from a well-shuffled deck of 52 cards. What is the probability that is a red 8, a red 9 or a red 10?

 [Q.N. 4(c), 2068]

 [Ans: 3/26]
- 12. The chance that A can solve a certain problem is $\frac{3}{4}$. The chance that B can solve it is $\frac{2}{3}$, find the chance that the problem will be solved if they both try. [Q.N.8(b),2068] $\left(Ans:\frac{3}{4}\right)$
- Define mutually exclusive events and dependent cases with example while performing an experiment. [Q.N. 4(c), 2067]
- 14. A class consists of 40 boys and 60 girls. If two students are chosen at random, what will be the probability that (a) both are boys (b) both are girls (c) one boy and one girl?

 (Ans: (a) $\frac{\infty C_2}{100C_2}$, (b) $\frac{\infty C_1}{100C_2}$, (c) $\frac{\infty C_1}{100C_2}$
 - The chance that A can solve a problem is $\frac{1}{4}$, the chance that B can solve it is $\frac{2}{3}$. Find the probability that the problem will be solved if both of them try. [Q.N. 4(c), 2066]
 - $\left(Ans:\frac{3}{4}\right)$
- 16. Five men in a group of 20 are graduates. If three men are chosen out of 20 at random, what is the probability of at least one being graduates?

 [Q.N. 8(a)Or, 2066]

 (Ans: \frac{137}{22})
- 17. Given P(A) = 0.4, P(A ∪ B) = 0.56, P(B) = 0.3.
 Are A & B independent? [Q.N.4(c), 2065]
- State and prove the theorem of compound probability [Q.N.8(a), 2065]
- 19. A bag contains 9 red, 7 white and 4 black balls. A ball is drawn at random. Find the probability of drawing (i) a white ball (ii) not a black ball.

 (Ans: (i) $\frac{7}{20}$, (ii) $\frac{4}{5}$)
- 20. If P(A) and P(B) are the probabilities of the happening of the events A and B respectively, prove that: P(A∪B) = P(A) + P(B) P(A∩B) where P(A∪B) and P(A∩B) have the usual meanings. What will be the form of the above formula if A and B are independent events?
 [Q.N. 8(a), 2064]

The chance that A can solve a certain problem is $\frac{1}{4}$ and the chance that B can solve it 21. is $\frac{2}{2}$. Find the chance that the problem will be solved if they both try. $\left(Ans.:\frac{3}{4}\right)$ IQ.N. 4(c), 20631 If P(A) and P(B) be the probabilities of the independent events A and B respectively, 22. prove that : $P(A \cap B) = P(A). P(B)$ P(A B) has the usual meaning. [Q.N. 8(a), 2063] What is the probability that an English alphabet selected at random is (i) a vowel (ii) a 23. consonant? [Q.N. 4(c), 2062] Ans.: (i) $\frac{2}{7}$ (ii) $\frac{5}{7}$ State and prove "The Theorem of Total Probability". [Q.N. 8(a), 2062] 24. A lot contains 10 items of which 3 are defective. Three items are chosen from the lot at 25. random one after another without replacement. Find the probability that : All three are defective. [Q.N. 8(a)Or, 2062] None of them are defective. (Ans.: (i) $\frac{1}{120}$ (ii) $\frac{119}{120}$ State and prove the "Theorem of Compound Probability". [Q.N. 8(a), 2061] 26. A class consists of 60 boys and 40 girls. If two students are chosen at random, what 27. will be the probability that (a) both are boys (b) both are girls [Q.N. 8(a) Or, 2061] (c) one boy and one girl ? Ans: (i) $\frac{60C_2}{100C_2}$ (ii) $\frac{40C_2}{100C_2}$ (iii) $\frac{60C_1 \approx 40C_1}{100C_2}$ Two dice are thrown. Determine the probability of getting a sum \leq 5. 28. Ans: 5 [Q.N. 4(c), 2060] [Q.N. 8(a), 2060] State and prove the "Theorem of total probability". 29. Two letters are selected at random from the word "examination". Find the probability 30. IQ.N. 3(c), 2059] that both of them are same letters. $\left(Ans:\frac{3}{55}\right)$ If A, B, C are three mutually exclusive events with 31. $\frac{1}{2}$ P(A) = $\frac{2}{3}$ P(B) = $\frac{1}{6}$ P(C), find P(A); P(B); and P(C). [Q.N. 8(a), 2059] $\left(\text{Ans: } \frac{2}{7}, \frac{1}{7}, \frac{4}{7} \right)$ If A and B are two independent events with $P(A) = \frac{2}{3}$ and $P(B) = \frac{3}{5}$, find

State and prove the "Theorem of total probability". [Q.N. 8(a), 2058]

P(AUB). (Ans: 13)

[Q.N. 4(c), 2058]