1 5.0 05		[Q.N.3(b), 2063]
6.	(Ans: \pm (4 + 3i)) Find the cube roots of unity and discuss their properties.	
2069)	$(1 + i\sqrt{3})$	irid the souare
7.	If 1, w, w ² be the cube roots of unity, prove that $(1 + w^2)^3 -$	$(1 + w)^3 = 0$
	[O.N. 3(b), Supp. :	[Q.N. 3(b), 2064]
18.	Solve : $z^6 = 1^{5}$ noticupe ant avios of it acts one metodent are	[Q.N. 12(a), 2064]
[6305	$\left(\text{Ans:} \pm 1, \pm \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right), \pm \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)\right)$	Ans ±1
19.	If α , β are the complex cube roots of unity then show that	
1'0' 0	$\alpha^4 + \beta^4 + \frac{1}{\alpha\beta} = 0$	[Q.N. 4(a), 2065]
20.	(Ans: 0) Find the square roots of $(-7 + 24i)$. (Ans: $\pm (3 + 4i)$)	[Q.N. 11(a), 2065]
21.	Prove that $(2+\omega)$ $(2+\omega^2)$ $(2-\omega^2)$ $(2-\omega^4) = 21$	[Q.N.4 (a), 2066]
22.	If $\sqrt{x + iy} = a + ib$, prove that $\sqrt{x - iy} = a - ib$	[Q.N.11 (a), 2066]
23.	Express the complex number $\frac{1}{1-1}$ in the polar form.	niginitiers, provi
io at TCF ($\left(\text{Ans:} \frac{1}{\sqrt{2}}(\cos 135^\circ + i \sin 135^\circ)\right)$	[Q.N. 4 (a), 2067]
24.	Find the square root of $\frac{5+12i}{3-4i}$	[Q.N.11 (a), 2007]
of 4 (0)	$\frac{3+2i}{100} = \frac{3+2i}{2-i}$ is mercedifiered of only the contract of a product of the contract of the contr	 A shake the second s
25.	Find the cube roots of unity.	[Q.N.3(b),2068]
['0	$\left(\text{Ans: } 1, \frac{-1+i\sqrt{3}}{2}, \frac{-1-i\sqrt{3}}{2}\right)$ S that even a reduction	to start the second second
26.	State De-Moivre's theorem. Using De Moivre's theorem, fi	A CHAR GLA BIBLO A
10	-2-2√3 i.	[Q.N.14,2068]
	(Ans: ± (1 - i √3))	
27.	If w be a complex cube root of unity, find the value of:	
	(Ans: 256) pa word 0 = 34 + xq - 543 nortsuce and film q [(+ w ²) ⁴ (1 + w − w ²) ⁴ O.N. 3(b). Set 'A' 2069
28.	If $z_1 = r_1 (\cos\theta_1 + i\sin\theta_1)$ and $z_2 = r_2 (\cos\theta_2 + i\sin\theta_2)$, pr	
łc	$z_1 z_2 = r_1 r_2 \{ \cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \}$ and	the right stift
	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \{ \cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2) \}$	[Q.N. 14, Set 'A' 2069
29.	Define complex number. Express a complex number into	polarform. State De
23.	Moivre's theorem. Using De'Moivre's theorem, find the cu	be roots of unity.

188	Class XI (Humanities) : Chapter-wise Question Collect	tion with Syllabus
30.	Express $\sqrt{3}$ +i in polar form, (Ans: 2(cos 30 ^e + i sin 30 ^e)	[Q.N. 3(b), Set 'B' 2069]
31.	State De Moivre's theorem for any positive index n. Us find the square roots of $4 + 4\sqrt{3}$ i. (Ans: $(\pm\sqrt{6} + i\sqrt{2})$	ing De Moivre's theorem [Q.N. 14, Set 'B' 2069]
32.	If $x = a + b$, $y = a\omega + b\omega^2$ and $z = a\omega^2 + b\omega$, show the	at:
33.	x + y + z = 0. State De'Moiver's theorem and use it to solve the equation	[Q.N. 3(b), Supp. 2069]
	$\left(Ans: \pm 1, \frac{1}{2}(1 \pm i\sqrt{3}), \frac{1}{2}(-1 \pm i\sqrt{3})\right)$	[Q.N. 14, Supp. 2069]
34.	If $\alpha = \frac{1}{2}(-1 + \sqrt{-3}), \beta = \frac{1}{2}(-1 - \sqrt{-3}),$	n an me gi uni i i m Tau ini i
Con con	Show that : $\alpha^4 + \alpha^2 \beta^2 + \beta^4 = 0$.	[Q.N. 3(b), 2070 'C']
35. 16862	Find the square root of the complex number $-5 + 12i$. (Ans: $\pm (2 + 3i)$)	[Q.N. 14, 2070 'C']
36.	Find the values of x and y if $(x + 2) + yi = (3 + i)(1 - 2i)$.	
(Referra Madan	(Ans: 3, – 5)	[Q.N. 3(b), 2070 'D']
37.	Define absolute value of a complex number. If Z ar numbers, prove that: $ z + w \le z + w $	[Q.N. 14, 2070 'D']
38. Taos	Find the cube roots of unity. Also, establish the propunity.	[Q.N. 14(Or), 2070 'D']
39. 1906	Prove that the modulus of a complex number and its complex number an	njugate are equal.
		[Q.N. 3(b), 2071 'C']
40.	State De Moivre's theorem. Using De Moivre's theorem fii $+ 4\sqrt{3}$ i.	
WAR.	$(Ans: \pm (\sqrt{6} + i\sqrt{2}))$	[Q.N. 14, 2071 'C']
41.	For any complex number Z, prove that: $Z \overline{Z} = Z ^2$.	[Q.N. 3(b), 2071 'D']
12.	State De Moivre's theorem. Using De Moivre's theorem	
10" silon [80155,	2 + 2 √3 i. ⁻¹¹ 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	[Q.N. 14, 2071 'D']
	Unit 9 – Polynomial Equati	ons
* (4-1) 1980S	For what value of p will the equation $5x^2 - px + 45 = 0$ has	· · · · · · · · · · · · · · · · · · ·
	(Ans: ± 30) (Ans: + (Ania) + (Brian + (Bass) + (Brian + ([Q.N.4(b), 2056]

If the roots of the equation $lx^2 + nx + n = 0$ be in the ratio p:q, find the value of

[Q.N.11(b), 2056]

3. Form the quadratic equation whose one root is 3 + 4i. (Ans: $x^2 - 6x + 25 = 0$) [Q.N.4(a), 2057]

2.

q p

n

p

Ans: -

Find the condition for two given quadratic equations $a_1x^2 + b_1x + c_1 = 0$ and $a_{2}x^{2} + b_{2}x + c_{2} = 0$ may have one root common and both roots common. [Q.N.11(a), 2057] $(b_1c_2 - b_2c_1)(a_1b_2 - a_2b_1) = (c_1a_2 - c_2a_1)^2$ Ans: and $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ 5. Is (x - 2) a factor of $x^3 + 3x^2 - 5x + 2$? Justify your answer. [Q.N.4(b), 2058] (Ans: (x-2) is not a factor of $x^3 + 3x^2 - 5x + 2$) so such as the last terms of terms o If one root of the equation $ax^2 + bx + c = 0$ be the square of the other, prove that, 6 $b^3 + a^3 c + ac^2 = 3abc$ [Q.N.11(b), 2058] Is (x - 2) a factor of $x^3 + 3x^2 - 5x + 2$? If not, find the remainder. [Q.N.4(b), 2059] 7. (Ans: x - 2 is not a factor of $x^3 + 3x^2 - 5x + 2$) Show that the roots of the equation $(a^2 - bc) x^2 + 2 (b^2 - ca) x + (c^2 - ab) = 0$ will 8. 106 be equal, if either b = 0 or $a^3 + b^3 + c^3 - 3abc = 0$. [Q.N.11(b), 2059] If the roots of the quadratic equation are p+q and p-q, find the quadratic 9. equation. [Q.N.4(b), 2060] $(Ans: x^2 - 2px + p^2 - q^2 = 0)$ If the roots of $\ell^2 x^2 + mx + n = 0$ be in the ratio 3 : 4, 10. (Oale) show that $12m^2 = 49 \ell n$. [Q.N.11(b), 2060] Apply remainder theorem to find the remainder when 11, $x^{3} - 2x^{2} + 5x - 10$ is divided by x + 2 [Q.N.4(b), 2061] (Ans: -36) If one root of the equation $ex^2 + mx + n = 0$ be four times the other, show that 12. 4m²=25 en. [Q.N.11(b), 2061] State the factor theorem & test whether x + 1 is the factor of $2x^3 - 4x^2 + 5x - 1$ or 13. not ? [Q.N.4(b), 2062] (Ans: x + 1 is not a factor of $f(x) = 2x^3 - 4x^2 + 5x - 1$) The guadratic equation : $ax^2 + bx + c = 0$ can not have more than two roots. 14. [Q.N.11(b), 2062] Prove it. When $2x^3 + 3x^2 - Kx + 4$ divided by x - 2, the remainder is 2K, find the value of 15. [Q.N.4(c), 2063] K. (Ans: k = 8) Under what conditions will quadratic equation $ax^2 + bx + c = 0$ has 16. i. one root the reciprocal of the other. roots equal in magnitude but opposite in sign. (Ans: (i) c = a (ii) b = 0) [Q.N.11(b), 2063] Find out which of the following are factors of 17. $2x^3 - 3x^2 - 9x + 10$: (i) x - 1 (ii) x + 1 (iii) x - 2 (iv) x + 2 [Q.N. 4(c), 2064] (Ans: (i), (iv))

A REAL PROPERTY OF STATES

18. ons 0	Under what conditions are the roots of the quadratic equation ax (i) real and unequal (ii) imaginary [i	² + bx + c = 0. Q.N. 11(b), 2064]
19. 19.	(Ans: (i) $b^2 - 4ac > 0$ (ii) $b^2 - 4ac < 0$) For what value of k, x + 3 is a factor of $3x^2 + kx + 6$? (Ans: 11)	[Q.N. 4(b), 2065]
20.	Find the equation whose roots are reciprocal to the roots of x^2 -	x + 1 = 0 Q.N. 11(b), 2065]
21. 05	Find the remainder when x^3+6x^2-x-30 is divided by $x+1$. (Ans: -24)	[Q.N.4 (b), 2066]
22.	If one root of the equation $ax^2 + bx + c = 0$ be the square of the $b^3 + a^2c + ac^2 = 3abc$.	N 11 (b) 20661
23.	For what value of k the polynomial 2x ³ - 3x ² - kx + 4 divided by remainder 2k?	x - 2 gives [Q.N.4 (b), 2067]
24.	(Ans: 2) If one root of the equation $ax^2 + bx + c = 0$ is triple of the $abc^{2} = 16ac$.	other, show that .N.11 (b). 20671
25.	If the roots of the equation $(a^2 + b^2) x^2 - 2(ac + bd)x + (c^2) + d^2$) = 0 are equal,
NON .	When show that: $\frac{a}{b} = \frac{c}{d}$, then show that: $\frac{a}{b} = \frac{c}{d}$, the description of the distribution of the distributicae of the distributicae of the dist	[Q.N.8(b),2068]
26.	Form a quadratic equation whose roots are -5 and 4. (Ans: $x^2 + x - 20 = 0$)	[Q.N.3(c),2068]
27.	For what values of p will the equation $5x^2 - px + 45 = 0$ have equation $5x^2 - px + 45 = 0$	ual roots. c), Set 'A' 2069]
28.	Prove that a quadratic equation cannot have more that two roots	16-9863/18
29.	If one root of the equation $ax^2 + bx + c = 0$ be twice the other st	
		c), Set 'B' 2069]
30.	From the equation whose roots are the reciprocals of the roots of	CONTRACTOR CONTRACTOR
	$ax^2 + bx + c = 0.$ [Q.N. 8(b), Set 'B' 2069]
alij (* k Komuni	$(Ans: cx^2 + bx + a = 0)$	di ensilê - î î
31.	(Ame: C)	(c), Supp. 2069]
32. k	If the equation $x^2 + px + q = 0$ and $x^2 + qx + p = 0$ have a com	mon root, prove (b), Supp. 2069]
33.	If the equation $x^2 + 2(k + 2)x + 9k = 0$ has equal roots, find k. (Ans: 1, 4) [Q.	N. 3(c), 2070 'C']
34.	Find the condition under which the two quadratic equations a and $a^1x^2 + b^1x + c^1 = 0$ may have one root common. (Ans: (ab' - a'b) (bc' - b'c) = (a'c - ac')^2 [Q.]	$4x^2 + bx + c = 0$
35.	Find the quadratic equation whose one root is $2 + \sqrt{3}$. (Ans: $x^2 - 4x + 1 = 0$)	N. 3(c), 2070 'D']
36.	If one root of the equation $ax^2 + bx + c = 0$ be the square of the	
37.	Find a quadratic equation whose roots are twice the roots of $4x^2$	

16

38.If the roots of the equation $x^2 + px + q = 0$ are in the same ratio as these of the
equation $x^2 + \ell x + m = 0$, show that:
 $p^2m = \ell^2q$ [Q.N. 8(b), 2071 'C']39.For what value of k the equation $9x^2 + kx + 1 = 0$ has equal roots?
(Ans: $k = \pm 6$)[Q.N. 3(c), 2071 'D']40.If $x^2 + px + q = 0$ and $x^2 + qx + p = 0$ have a root in common, show that: either
p = q or p + q + 1 = 0

Unit 10 – Co-ordinate Geometry

10.1 Straight Line

3.

5

6.

7.

8.

9

- 1. Find the acute angle between the lines x 3y 6=0 and y=2x+5. (Ans: 45°) [Q.N.2(b), 2056]
- 2. Find the angles between two lines given by $y = m_1 x + c_1$ and $y = m_2 x + c_2$. Also state the condition for them to be perpendicular and parallel.

$$\left(Ans: \phi = \tan^{-1} \left(\pm \frac{m_1 - m_2}{1 + m_1 m_2} \right) \right)$$
 [Q.N.9(a), 2056]

What are the standard forms of equation of a straight line ? Find the slope of the line $\frac{x}{a} - \frac{y}{b} = 1$. [Q.N.2(b), 2057]

Ans: Slope(m) = $\frac{b}{a}$

4. Find the length of the perpendicular from the point (x_1, y_1) on a straight line x Cos α + y Sin α = p. [Q.N.9(a), 2057]

$(Ans: \pm (x_1 cos \alpha + y_1 sin \alpha - P))$

Write the conditions for which the straight lines given by $A_1x + B_1y + C_1 = 0$ and $A_2x + B_2y + C_2 = 0$ will be parallel and perpendicular [Q.N.2(b), 2058]

$$\left(\text{Ans: } \phi = \tan^{-1}\left(\pm \frac{m_1 - m_2}{1 + m_1 m_2}\right); m_1 m_2 = -1; m_1 = m_2\right)$$

Find the length of the perpendicular from the point (h, k)

on a straight line $x \cos \alpha + y \sin \alpha = p$

[Q.N.9(a), 2058]

[Q.N.9(a), 2059]

(Ans: \pm (hcos α + ksin α - p)

Find the equation of the line through (5, 4) and perpendicular to the line 4x - 3y = 10. [Q.N.2(b), 2059]

(Ans: 3x + 4y - 31 = 0)

Find the length of the perpendicular from the point (x1, y1) on a straight line

 $x \cos \alpha + y \sin \alpha = p.$

n α = p.

$(Ans: \pm (x_1 \cos \alpha + y_1 \sin \alpha - p))$

Find the equation of the straight line whose slope is $\frac{1}{3}$ and passes through the intersection of lines y = x and y = -x. [Q.N.2(b), 2060] (Ans: x - 3y = 0)

10. 🔾	Find the equation of the line through the point that divide points $(-3, -4)$ and $(7, 1)$ in the ratio 3 : 2 and is perpendicular	s the join of the
10' FS		[Q.N.9(a), 2060]
11.	Find the straight lines which have slope - 1 and form a triangle units with coordinate axes.	
0.14	(Ans: x + y - 4 = 0)	- A (208)
12.	Find the equation to the straight line which passes through the straight lines $3x - 4y + 1 = 0$ and $5x + y = 1$, and cuts off eq the axes. (Ans: $23x + 23y = 11$)	the intersection of ual intercepts from [Q.N.9(a), 2061]
13.	Find the distance between the parallel lines,	declarable + AF
	y = 2x + 4 and $6x - 3y = 5$.	[Q.N.2(b), 2062]
	$\left(Ans:\frac{17}{3\sqrt{5}}unit\right)$	Lohronie (AneriA)
14.	Find the equation of the locus of a point P which is $3x - 4y + 2 = 0$ and the origin.	equidistant from [Q.N.9(a), 2062]
	$(Ans: 16x^2 + 9y^2 + 24xy - 12x + 16y - 4 = 0)$	
15.	Find the intercepts on the axes made by the line $2x + 3y = 5$	Q ISRA
	Imp stondard forms of the story statistic fact the s	[Q.N.2(b), 2063]
	(Ans: x-intercept = $\frac{5}{2}$ and y-intercept = $\frac{5}{3}$)	२ ६ जन्म इंग
16.	Prove that the equation of the straight line which passes the ($a\cos^3\theta$, $a\sin^3\theta$) and is perpendicular to the straight line x Sec is $x\cos\theta - y\sin\theta = a\cos2\theta$.	through the point θ + y Cosecθ = a [Q.N.9(a), 2063]
17.		the straight lines Q.N.9(a) Or, 2063]
4.0	(Ans: 21x + 27y - 44 = 0 and 99x - 77y + 34 = 0)	6) x (2018) ;
18.	If p be the perpendicular distance of the origin from a line wh	ose intercepts on
963.	the axes are a and b, prove that $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$	[Q.N. 2(b), 2064]
19.	Find the equations of the straight lines which passes through and are inclined at 45° to the straight line $x + 3y + 4 = 0$.	h the point (2, 3) [Q.N. 9(b), 2064]
	(Ans: (x - 2y + 4 = 0, 2x + y - 7 = 0)) network of the rest is reference of the reference o	6. C. Find they
20	Find the equation of the line through the intersection $3x - 4y + 1 = 0$ and $5x + y - 1 = 0$, and cutting off equal interce (Ans: $23x + 23y = 11$)	on of the lines pts from the axes. [Q.N. 2(b), 2065]
21.		[Q.N. 9(a), 2065]
	(Ans: $2y - x = 0 \& x - 2y \pm 3 = 0$) (0 = 18 - $y \& +$	1
22.	Examine whether the points (0, 11), (2, 3) and (3, -1) are colline	ar or not.
Notes ,	(Ans: collinear)	[Q.N.2 (a), 2066]
23.	Determine the value of m for which the straight lines $y = x + 1$ y = mx + 3 are concurrent.	y = 2 (x+1) and
di dhu	(Ans: 3) (Ansi - a stepla secret and the state of the secret	[Q.N.9 (a), 2066]
24.	Find the value of k so that the line whose equation is $x + y$ triangle with the coordinate axes whose area is 32 sq. units.	
	(Ans: ± 8)	[Q.N. 2 (b), 2067]

25. Find the equation to the straight line which makes equal intercepts on the axes and passes through the point of intersection of the lines 2x - 3y + 1 = 0 and x + 2y - 2 = 0.(Ans: 7x + 7y = 9) might reduce the element of the line in the set of the 4 [Q.N.9 (a), 2067] Find the equation of the line parallel to the line 5x + 4y = 9 and making an 26. intercept -5 on the x-axis. [Q.N.4(a).2068] (Ans: 5x + 4y + 25 = 0)27. Find the angle between two straight lines whose equations are $y = m_1 x + c_1$ and $y = m_2 x + c_2$. Also find the conditions under which the two straight lines will be parallel^S (i) (ii) perpendicular. [Q.N.13.2068] $(Ans: \theta = tan - 1 \left(\pm \frac{m_1 - m_2}{1 + m_1 m_2} \right); (i) m_1 = m_{2_1}(ii) m_1 m_2 - 1) = 16 3 S.0.1$ 28. Find the equation of a line through (5,4) and perpendicular to the line 4x - 3y = 10. (Ans: 3x + 4y - 31 = 0)[Q.N. 4(a), Set 'A' 2069] If p and P1 be the lengths of the perpendiculars from origin upon the straight 29. lines whose equations are x sec θ + y cosec θ = a and xcos θ - ysin θ = a cos2 θ prove that: $4p^2 + p^{12} = a^2$ [Q.N. 13, Set 'A' 2069] 30. Find the equation to the straight line that has y-intercepts 3 and is parallel to the straight line 8x - 4y + 9 = 0. (Ans: 2x - y + 3 = 0)[Q.N. 4(a), Set 'B' 2069] 31. Prove that the perpendicular from the origin upon the straight line joining the points (c cos α , c sin α) and (c cos β , c sin β) bisects the distance between them. [Q.N. 13, Set 'B' 2069] 32. If p is the length of the perpendicular dropped from the origin of the line $\frac{x}{a} + \frac{y}{b} = 1$, prove that: $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{b^2}$. [Q.N. 4(a), Supp. 2069] 33. Find the equations of the lines through the point (3, 2) and making angle 45° with the line x - 2y = 3. [Q.N. 13, Supp. 2069] (Ans: x + 3y - 9 = 0, 3x - y - 7 = 0)34. Find the distance between the two parallel lines. 3x + 5y = 11 and 3x + 5y = -23[Q.N. 4(a), 2070 'C'] (Ans: √34) 35. Find the length of the perpendicular drown from the point (x^1, y^1) on the line whose equation is Ax + By + c = 0. [Q.N. 13, 2070 'C'] $\frac{Ax' + By' + C}{\sqrt{\Delta^2 + B^2}}$ Ans: -36. Find the equation of the line passing through the middle point of the line segment connecting (2, -4) and (2, 4) and parallel to the line 3x - 2y = 4. (Ans: 3x - 4y - 6 = 0)[Q.N. 4(a), 2070 'D'] Find the equations of the bisectors of the angles between the lines 37. 4x - 3y + 1 = 0 and 12x - 5y + 7 = 0 and prove that the bisectors are at right angles to each other. [Q.N. 13, 2070 'D'] (Ans: 4x + 7y + 11 = 0, 7x - 4y + 3 = 0)

- 38. Find the equation of the line through (4, 2) which is parallel to x 2y 4 = 0. (Ans: x - 2y = 0) [Q.N. 4(a), 2071 'C']
- **39.** Find the bisectors of the angles between the lines $\ell_1 x + m_1 y + n_1 = 0$ and $\ell_2 x + m_2 y + n_2 = 0$. Also determine the condition that the bisector of the angle in which the origin lies. [Q.N. 13(Or), 2071 'C']

$$\frac{\ell_1 x + m_1 y + n_1}{\sqrt{\ell_1^2 + m_1^2}} = \pm \frac{\ell_2 x + m_2 y + n_2}{\sqrt{\ell_2^2 + m_2^2}}$$

ns:
$$\frac{\ell_1 x + m_1 y + n_1}{\sqrt{\ell_1^2 + m_1^2}} = \pm \frac{\ell_2 x + m_2 y + n_2}{\sqrt{\ell_2^2 + m_2^2}}$$

40.

1.

2

6.

7.

8.

9.

Find the obtuse angle between the lines x - 3y = 6 and y = 2x + 5. (Ans: 135°) [Q.N. 4(a), 2071 'D']

analo arriveen two

10.2 Pair of Straight Lines

Write the condition for which the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ may represent a line pair. [Q.N.2(c), 2056]

$$(Ans: abc + 2fgh - af^2 - bg^2 - ch^2 = 0)$$

- Prove that the straight lines joining the origin to the points of intersection of the line $\frac{x}{a} + \frac{y}{b} = 1$, and the curve $x^2 + y^2 = c^2$ are at right angles if $\frac{1}{a^2} + \frac{1}{b^2} = \frac{2}{c^2}$ [Q.N.9(b), 2056]
- 3. Determine the lines represented by the equation $x^2+2xy+y^2-2x 2y 15 = 0$. [Q.N.2(c), 2057]

(Ans: x + y - 5 = 0 and x + y + 3 = 0)

- If the pair of lines $x^2 2pxy y^2 = 0$ and $x^2 2q xy y^2 = 0$ be such that each pair bisects the angles between the other pair, prove pq = -1. [Q.N.9(b), 2057]
- 5. Find the angle between the line pair given by $x^2 2xy \cot \theta y^2 = 0$
 - (Ans: α = 90°)

- [Q.N.2(c), 2058]
- Prove that the pair of straight lines joining the origin to the points of intersection of the line y=mx+c and the curve
 - $x^{2} + y^{2} = a^{2}$ are at right angles of $2c^{2} = a^{2}(1 + m^{2})$ Find the angle between the line pair $2x^{2} + 7xy + 3y^{2} = 0$. (Ans: $\theta = 45^{\circ}$ or 135°)
- Prove that the straight lines joining the origin to the point of intersection of the line $\frac{x}{a} + \frac{y}{b} = 1$ and the curve $x^2 + y^2 = c$ are at right angles if $\frac{1}{a^2} + \frac{1}{b^2} = \frac{2}{a^2}$.

[Q.N.9(b), 2059]

Verify whether the second degree equation

 x^{2} + 6xy + 9y² + 4x + 12y - 5 = 0 represents a pair of straight lines or not. [Q.N.2(c), 2060]

10. Show that the lines joining the points of intersection of the line x + y = 1 with the curve $4x^2 + 4y^2 + 4x - 2y - 5 = 0$ with the origin are at right angles to each other. [Q.N.9(b), 2060]

11. e	Find the angle between the pair of lines $x^2 + 6xy + 9y^2 + 4x + 12$	2y – 5 = 0.
10800	(Ans: θ = 0°)	[Q.N.2(c), 2061]
12.	For what values of C, the lines which join the origin	to the point of
2069	intersection of the line $x - y + c = 0$ and the curve $x^2 + y^2 + 4x - be$ at right angles.	6y - 36 = 0 may [Q.N.9(b), 2061]
	(Ans: either $c = 9$, or $c = -4$)	
13.	Find the value of K so that $2x^2+7xy+3y^2-4x-7y+K = 0$ may relines.	present a pair of [Q.N.2(c), 2062]
14.	(Ans: k = 2) Determine the two straight lines represented by :	100 160W
26603	$6x^2 - xy - 12y^2 - 8x + 29y - 14 = 0$	IO N 0/b) 20621
	(Ans: 2x-3y+2=0, 3x+4y-7=0)	[Q.N.9(b), 2062]
15.	Find the angle between the lines represented by $2x^2 + 7xy + 3y^2$	2 = 0
	equality to they as of these togethe the origin to the reler see	[Q.N.2(c), 2063]
High H	(Ans: 45° or 135°) Hill Sala Publick available to brook a she yanii br	- 87 71 -
16.		² +4x+12 <i>y</i> -5 = 0. [Q.N.9(b), 2063]
17. 01	(Ans: $x + 3y = 1$ and $x + 3y = -5$)	the equation
	$2x^2 + 3xy + y^2 + 5x + 2y - 3 = 0$	[Q.N. 2(c), 2064]
511097 1013	(Ans: $x + y + 3 = 0$, $2x + y - 1 = 0$) Find the single equation of the lines through the origin and	normandiaular to
18. 19 15	the lines represented by the equation $ax^2 + 2hxy + by^2 = 0$.	[Q.N.9(a), 2064]
	$\left(\operatorname{Ans:} \tan^{-1}\left(\pm \frac{2\sqrt{h^2 - ab}}{a + b}\right)\right)$	Sale -
19.	Show that the equation $kx^2 + (k^2 - 1)xy - ky^2 = 0$ represent perpendicular lines for all values of k.	esents a pair of [Q.N. 2(c), 2065]
20.	Show that pair of lines $x^2 (\tan^2\theta + \cos^2\theta) - 2xy \tan\theta + y^2 \sin^2\theta$	
71-101	the axis of x angle such that the difference of their tangent is 2.	
21. ₀₉₀	For what vaue of K, the equation $2x^2+7xy+3y^2-4x-7y+K=0$ r	epresents a line
	South dependent Asso denverthe condition of an Starge	TO N 0 (a) 20001
11 101		[Q.N.2 (c), 2066]
22.		[Q.N.9 (b), 2066]
	(Ans: bx2 - 2hxy + ay2 = 0) = 0 = g = g = g = g = g = g = g = g = g	0.000
23.	Find the angle between the lines given by $x^2 - 2xy \cot \theta - y^2 =$	0. ·
	(Ans: 90°) 2	[Q.N. 2 (c), 2067]
24.	Find the condition so that the straight lines joining the origin intersection of the line $kx + hy = 2hk$ with the circle $(x - h)^2 + (y right angle.$	to the points of $(-k)^2 = c^2$ are at
		[Q.N.9 (b), 2067]
25.	Prove that the straight lines joining the origin to the point of ir	tersection of the
20683	line $\frac{x}{a} + \frac{y}{b} = 1$ and the curve $x^2 + y^2 = c^2$ are at right angles if: $\frac{1}{a^2}$	$+\frac{1}{b^2}=\frac{2}{c^2}$
	I the constants to the unit of $-\gamma^2 = 100$ states to the points to \hat{B}_1^2 where \hat{B}_2^2	Q.N. 13(UI),2000j

1

- 26. Show that the homogeneous equation of degree two always represents a pair of straight line passing through the origin. Also, find the angle between them. [Q.N. 13(Or), Set 'A' 2069]
- 27. Prove that the bisectors of the angles between the pair of straight lines

$$ax^2 - 2hxy + by^2 = 0$$
 is given by $\frac{x^2 - y^2}{xy} = \frac{a - b}{h}$ [Q.N. 13(Or), Set 'B' 2069]

28. Find the angle between the two lines represented by $ax^2 + 2hxy + by^2 = 0$. Find the condition under which the lines will be

i) perpendicular to each other.

ii) coincident.

30.

31.

32.

best

What condition is to be satisfied for two lines to be real and distinct?

[Q.N. 13(Or), Supp. 2069]

Ans:
$$\tan^{-1}\left(\pm \frac{2\sqrt{h^2 - ab}}{a + b}\right)$$
, (i) $a + b = 0$, (ii) $h^2 - ab = 0$, $h^2 - ab > 0$)

29. Find the equation to the pair of lines joining the origin to the inter section of the straight line y = mx + c and the curve $x^2 + y^2 = a^2$. Prove that they are at right angles if $2c^2 = a^2 (1 + m^2)$. [Q.N. 13(Or), 2070 'C']

(Ans:
$$(c^2 - a^2m^2) x^2 + 2a^2m xy + (c^2 - a^2)y^2 = 0$$
)

Find the condition under which the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ may represent a pair of lines. [Q.N. 13(Or), 2070 'D']

Find the angle between the pair of lines represented by a homogeneous equation of second degree. Also derive the condition of parallelism and perpendicularity of the lines. Find the angle between the lines represented by $x^2 + 9xy + 14y^2 = 0$. [Q.N. 13, 2071 'C']

Ans:
$$\theta$$
 : tan⁻¹ $\left(\pm \frac{2\sqrt{h^2 - ab}}{a + b}\right)$

Condition of Perpendicularity: a + b = 0Condition of parallelism: $h^2 = ab$

Find the equation of the circle whose centre is at (3, 4) and touches the x-axis. (Ans: $x^2 + y^2 - 6x - 8y + 9 = 0$)
[Q.N. 4(b), 2071 'D']

33. Find the angle between the pair of lines represented by a homogeneous equation of second degree. Also derive the condition of coincidence and prependicularity of the lines. Find the angles between the pair of lines represented by $7x^2 + 8xy + y^2 = 0$. [Q.N. 13(Or), 2071 'D']

$$\theta = \tan -1 \left(\pm \frac{2\sqrt{h^2 - ab}}{a + b} \right)$$

Condition of perpendcularity: $a + b \neq 0$
Ans: Condition of coincience : $h^2 = ab$

$$\theta = \tan^{-1}\left(\pm\frac{3}{4}\right)$$

Unit 11 - Circle

Find the equation of the circle with center at (4, -1) and passing through the origin. [Q.N.4(b),2068]

 $(Ans: x^2 + y^2 - 8x + 2y = 0)$

2. Show that the tangents to the circle $x^2 + y^2 = 100$ at the points (6,8) and (8, - 6) are perpendicular to each other. [Q.N.9(a),2068]

3. 1730,5	Find the equation of the circle concentric with the c $x^2 + y^2 - 8x + 12y + 15 = 0$ and passing through (5,4)	
Kane	[Ans: $x^2 + y^2 - 8x + 12y - 49 = 0$]	[Q.N. 4(b), Set 'A' 2069]
4.	Find the equation of the tangent to the circle $x^2 + y^2$ perpendicular to $3x - 4y = 1$.	-2x - 4y - 4 = 0 which are
16008. 5> 16809	(Ans: $4x + 3y + 5 = 0$ and $4x + 3y - 25 = 0$) Find the equation to the circle which has the points of a diameter. (Ans: $x^2 + y^2 - 2x - 2y - 3 = 0$)	[Q.N. 4(b), Set 'B' 2069]
6.	Show that the circles $x^2 + y^2 - 6x - 6y + 10 = 0$ a other at (1, 1).	and $x^2 + y^2 = 2$ touch each
7.	Find the equation of the circle with (0, 0) and (4, 7) as	
3.	(Ans: $x^2 + y^2 - 4x - 7y = 0$) Find the equation of the tangent and normal to the c	[Q.N. 4(b), Supp. 2069] circle.
testan.	$x^{2} + y^{2} - 2x - 4y + 3 = 0$ at (2, 3) (Ans: $x + y - 5 = 0$, $x - y + 1 = 0$)	[Q.N. 9(a), Supp. 2069]
).).	Find the equation of the circle whose two of the di x + 2y = 8 and radius 10. (Ans: $x^2 + y^2 - 8x - 4y - 80 = 0$)	[Q.N. 4(b), 2070 'C']
0.	Find the equations of the tangent and normal to the	CIrcle
(6309) 1	$x^{2} + y^{2} - 3x + 10y - 5 = 0$ at the point (4, -11) (Ans: $5x - 12y - 132 = 0$, $12x + 5y + 7 = 0$) Find the centre and the radius of the circle	[Q.N. 9(a), 2070 'C']
	$x^{2} + y^{2} + 4x - 6y + 4 = 0$ (Ans: (-2, 3), 3)	[Q.N. 4(b), 2070 'D']
2.	Find the value of k so that the line $4x + 3y + k$ $x^2 + y^2 - 4x + 10y + 4 = 0$.	= 0 may touch the circle [Q.N. 9(a), 2070 'D']
3.	(Ans: -18 or 32) Find the equation of the circle which touches the axes (Ans: $x^2 + y^2 - 4x - 4y + 4 = 0$))	s at (2, 0) and (0, 2). [Q.N. 4(b), 2071 'C']
4 ,0808	Prove that the tangents to the circle $x^2 + y^2 = 5$ at the	e point (1, -2) also touches
5.	the circle $x^2 + y^2 - 8x + 6y + 20 = 0$ Prove that the two circles $x^2 + y^2 + 2ax + c^2 = 0$ and x^2	$x^{2} + y^{2} + 2by + c^{2} = 0$ touch if

Unit 12 - Limit and Continuity

12.1 Limits

		(2) - (A) - (2)
1. *	Evaluate $\lim_{x\to\infty} (\sqrt{x} - \sqrt{x-3})$	[Q.N.5(a), 2056]
11903	(Ans: 0)	fotsulave i Ri
2.	Determine the limit of $f(x) = \begin{cases} 2 - x^2 & \text{for } x < 2 \\ x - 4 & \text{for } x > 2 \end{cases}$ at $x = 2$, if it exists.	Sec. 201
	(Ans: -2)	[Q.N.6(a), 2056]
3,580	Prove geometrically $\frac{\lim_{\theta \to 0} \frac{\sin \theta}{\theta}}{\sin \theta} = 1$	[Q.N.12(b), 2056]
4.	Evaluate : $\lim_{x \to 1} \frac{x^2 + 3x - 4}{x - 1}$ (Ans: 5)	[Q.N.5(a), 2057]
5 .	Find the limit of the function $f(x) = x^2 + 2$, $x \le 5$ = $3x + 12$, $x > 5$ at $x = 5$ if	f it exists.
	(Ans: 27)	[Q.N.6(a), 2057]

Evaluate: $\frac{\lim_{x \to y} \frac{\sin x - \sin y}{x - y}}{x - y}$ 6. [Q.N.12(b), 2057] (Ans: cosy) 7. Evaluate: $\lim_{x \to a} (\sqrt{x + a} \cdot \sqrt{x})$ [Q.N.5(a), 2058] X →∞ (Ans: 0) Prove geometrically, $\lim \frac{\sin x}{\cos x} = 1$ 8. [Q.N.12(b) (Or), 2058] $x \rightarrow 0^{-X}$ red doit Evaluate: $\lim_{x \to 0} \frac{1 - \cos px}{1 - \cos qx}$ 9. [Q.N.5(a), 2059] $\left(Ans: \frac{p^2}{q^2}\right)$ Does the limit of the function, f (x) $= 2x + 1 \text{ for } x 1 \\ = 4x^2 - 1 \text{ for } x < 1 \\ ext{ at } x = 1 \\ ext{ for } x < 1$ 10. [Q.N.6(a), 2059] the circle whose (Ans: The limit of f(x) at x = 1 exists and $\lim_{x \to 1} f(x) = 3$) 11. Contraction of the second state $\sum_{x\to\infty}^{x\to\infty} \sqrt{x} \left(\sqrt{x} - \sqrt{x} + a\right) = 0$ for all $a = 0 = 2 - \sqrt{2}$ [Q.N.12(b), 2059] $\left(\text{Ans: } \frac{a}{2} \right)$ Does the limit of the function $f(x) = \frac{x \text{ when } x \Rightarrow 0}{-x \text{ when } x < 0}$, 12. exist at x = 0 ? Justify your answer. [Q.N.5(a), 2060] Evaluate : $\lim_{x \to 0} \frac{\tan x - \sin x}{x^3}$ 13. [Q.N.12(b), 2060] $\left(\text{Ans: }\frac{1}{2}\right)$ Evaluate: $\lim_{x \to 1} \frac{\sqrt{2x} - \sqrt{3 - x^2}}{x - 1}$ 查请 明整 14. [Q.N.5(a), 2061] (Ans: √2) Evaluate : $Lt \xrightarrow{x \to y} \frac{\tan x - \tan y}{x - y}$ 15. [Q.N.12(b), 2061] (Ans: sec²v) Evaluate: Lt $x \rightarrow a = \frac{x^{2/3} - a^{2/3}}{x - a}$ 16. [Q.N.5(a), 2062] $\left(Ans:=\frac{2}{3a^{1/3}}\right)$ Prove that : Lt $x \rightarrow 1$ $\frac{x - \sqrt{2 - x^2}}{2x - \sqrt{2 + 2x^2}} = 2$ 17. [Q.N.12(b), 2062] audelty? min actorico collecto generated : (actimem Mathematics... 199

(

1

18.	A function is defined as :	A Brailand Pa
	$f(x) = \begin{cases} 3x^2 + 2 & \text{if } x < 1\\ 2x + 3 & \text{if } x \ge 1 \end{cases}$	
	Find Lt $f(x)$.	[Q.N.12(b) (Or), 2062]
• [1805] ,	(Ans: 5)	0 <- x · · · · · · · · · · · · · · · · · ·
19.		 Losa s nia s cnA) [Q.N.5(c), 2063] statistical statistical statisti statistical statistical statist
20.	Find the limit of the function for $f(x) = x + 2$ when $x < 0$ at $x = 0$.	$x \ge 0$ and $f(x) = 4x + 2$ when [Q.N.6(c), 2063]
- V 9 a	(Ans: 2)	
21.000	Evaluate : $x \rightarrow \theta \frac{x \cos \theta - \theta \cos x}{x - \theta}$.	
	(Ans: (θ sin θ + cos θ))	$\left(\begin{pmatrix} 1 \\ \overline{aE} \\ \gamma b \end{pmatrix} \right)$ and
22.	Evaluate $x \rightarrow 0 \frac{\sin x^{\circ}}{x}$	[Q.N. 5(c), 2064]
2089)	$\left(\operatorname{Ans} \frac{\pi}{180^\circ}\right)$	(0 ienA)
2069]	[Q.N. 9(5), 3at A'	1910/19/11
23.	Evaluate $x \rightarrow 0$ $\frac{\tan x - \tan y}{x - y}$	[Q.N. 13(b), 2064] (Ospo + Onlegi sens)
<u>1</u> 0803		35. Evaluata $x \rightarrow 0$ 1
24.	Evaluate : $\lim_{x \to a} \frac{\sin (x - a)}{x^2 - a^2}.$	[Q.N. 5(a), 2065]
	$\left(\operatorname{Ans}:\frac{1}{2a}\right)$	
Téads	18-x- 0.N. 9(h). Set 8:	36. Evaluato:
25	Evaluate: $x \rightarrow \frac{x}{2} \frac{\tan x + \cot x}{\tan x - \cot x}$	[Q.N. 12(b), 2065]
10000	x8 sos	$37, 1663991 \times \rightarrow 0$
26,	Evaluate: $\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{x}$	[Q.N.5 (a), 2066]
2069]	(Ans: 0)	38. Eyawate' x → a
27.	Determine the limit of	(Ans: Avisa)
[0, 0	$f(x) = 2 - x^2 \text{for } x \le 2 \\ = x - 4 \text{for } x > 2 \end{cases} \text{ at } x = 2, \text{ if it exists.}$	$\begin{array}{ccc} & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$
10.8	vo(Ans: - 2) ○ · · · · · · · · · · · · · · · · · ·	
28.	Evaluate : $\frac{\lim_{x \to \theta} \frac{x \sin \theta - \theta \sin x}{x - \theta}}{x - \theta}.$	[Q.N.12 (b), 2066]
	(Ans: sin0 - 0cos0.)	(wate

	ac hanitch a pritornit A Dr
29. Evaluate : $ \lim_{x \to \infty} \left(x - \sqrt{x^2 + x} \right) $	2 [Q.N.5 (a), 2067]
$\left(\operatorname{Ans:}\frac{-1}{2}\right)$	$F(\mathbf{x}) = \left\{ \begin{array}{c} c_{\mathbf{x}} & c_{\mathbf{x}} \\ c_$
0. Evaluate : $\begin{array}{c} Lt \\ x \rightarrow 0 \end{array} = \begin{array}{c} (a+x) \sec{(a+x)} - a \sec{a} \\ x \end{array}$	4 [Q.N.12 (b), 2067]
(Ans: a sin a sec ² a + sec a)	(6.)#NA)
$x \rightarrow a (x^2 - a^2)$	[Q.N.4(c),2068]
envision $\left(\frac{1}{2a} \right)^{1/2}$ of $\left(\frac{1}{2a} \right)^{1/2}$	20. Find the limit of the tunct: c_{1} (0.a) $r \approx 0$.
$\lim_{x \to \infty} \left(\sqrt{3x} - \sqrt{2x + a} \right)$	(SianA)
Evaluate: $\lim_{x \to a} \left(\frac{\sqrt{3x} - \sqrt{2x + a}}{2(x - a)} \right)$	[Q.N.9(b),2068]
$\left(\operatorname{Ans:}\left(\frac{1}{4\sqrt{3}a}\right)\right)$	$(Ans: \{\theta \text{ sin } \theta + cos \theta\})$
3. Evaluate : $\lim_{x \to \infty} (\sqrt{x} - \sqrt{x} - 3)$	Evaluate $x \xrightarrow{\text{trim}} 5 x \xrightarrow{\text{s}} 7$
(Ans: 0)	[Q.N. 4(c), Set 'A' 2069]
Evaluate: $\lim_{x \to \theta} \frac{x \cos \theta - \theta \cos x}{x - \theta}$	[Q.N. 9(b), Set 'A' 2069]
(Ans: θsinθ + cosθ)	28. Evaluate $x \mapsto 0$ for $x = \frac{1}{x} \frac{1}{y}$
Evaluate : $\lim_{x \to 0} \frac{1 - \cos px}{1 - \cos qx}$	[Q.N. 4(c), Set 'B' 2069]
$\left(\left(\text{Ans:} \frac{p^2}{q^2} \right) \right)$	$\begin{array}{ccc} & \text{Evaluate} & \text{sin} & \underline{\text{Sin}}(x - x) \\ x \to a & x^2 + e \end{array}$
	(Ans: 1)
Evaluate: $\lim_{x \to 2} \frac{x - \sqrt{8 - x^2}}{\sqrt{x^2 + 12} - 4}$	[Q.N. 9(b), Set 'B' 2069]
(Ans: 4)	Evaluarie <u>x x oa</u> Evaluarie <u>x x an</u> x - Ge
$\frac{\lim}{x \to 0} \frac{1 - \cos 6x}{x^2}.$	[Q.N. 4(c), Supp. 2069]
(Ans: 18)	- Y + I V - IU - JSUISV- 35
Evaluate: $x \rightarrow a \frac{\sqrt{3a-x} - \sqrt{x+a}}{4(x-a)}$	[Q.N. 9(b), Supp. 2069]
$\left(\operatorname{Ans:} \frac{-1}{4\sqrt{2a}}\right)$	(Ane: 0) 27 Determine the firm, of
9. Evaluate: $\frac{\lim_{x \to 4} \frac{x^3 - 64}{x^2 - 16}}{x \to 4 + x^2 - 16}$	[Q.N. 4(c), 2070 'C']
(Ans: 6)	[S <x10' n−x="</td"></x10'>
Evaluate: $\lim_{x \to \theta} \frac{x \cot \theta - \theta \cot x}{x - \theta}$	[Q.N. 9(b), 2070 'C']
Here $\left(\begin{array}{c} 0 & 0 \\ \text{Ans: } \cot \theta + \frac{\theta}{\sin^2 \theta} \end{array} \right)$	S Evaluate: $\frac{Lim}{x \rightarrow 0} \frac{x \sin \theta - 0}{x \rightarrow 0}$
Alls. COLUT	Bard Contraction of the second

$$\begin{array}{c} \mbox{Mathematics... 201} \\ \mbox{41.} Evaluate: $x \to \frac{\pi}{4} & \frac{\sec^2 x - 2}{\tan x - 1} & [0.N. 4(c), 2070 \ D] \\ \mbox{(Ans: 2)} \\ \mbox{42.} & Evaluate: $x \to \infty & \sqrt{x} (\sqrt{x} - \sqrt{x - a}) & [0.N. 9(b), 2070 \ D] \\ \mbox{(Ans: $\frac{a}{2})} \\ \mbox{43.} & Evaluate: $x \to \infty & (\sqrt{x + a} - \sqrt{x}) & [0.N. 4(c), 2071 \ C] \\ \mbox{(Ans: 0)} & [0.N. 9(b), 2071 \ C] \\ \mbox{(Ans: 0)} & [0.N. 9(b), 2071 \ C] \\ \mbox{(Ans: 0)} & [0.N. 4(c), 2071 \ D] \\ \mbox{(Ans: 0)} & [0.N. 4(c), 2071 \ D] \\ \mbox{(Ans: 1)} & [0.N. 4(c), 2052] \\ \mb$$$

for x = 1for x > 1 at x = 1 if x = 1 if x = 1 if x = 1= 2x = 3x

lim

[Q.N.12(b) (Or), 2059]

$$\lim_{x \to -} f(x) = \lim_{x \to -+} f(x) =$$

Ans:

 $x \rightarrow a f(x)$, discontinucus (anacosia canà)

and the second designed to the second designed as the second designe	
6.	A function is defined as $f(x) = \frac{x^2 - 1}{x^2 + 1}$ when $x < 1$ when $x \ge 1$
	Examine whether the function is continuous or not at $x = 1$. [Q.N.6(a), 2060]
	(Ans: f(x) is not continuous at x = 1)
7.	Discuss the continuity of the function : $f(x) = x $ at $x = 0$ [Q.N.12(b) (Or), 2060] (Ans: $f(x)$ is continuous at $x = 0$)
8.	Show that the function $f(x) = \begin{cases} x + 2 & \text{for } x \neq 2 \\ 0 & \text{for } x = 2 \end{cases}$, is not continuous at $x = 2$
	[Q.N.6(a), 2061]
9.	Discuss the continuity of the function
	$x \sin \frac{1}{2}$ where $x \neq 0$
	$f(x) = \begin{cases} x \sin \frac{1}{x} & \text{where } x \neq 0 \\ 0 & \text{when } x = 0 \end{cases}$ [Q.N.12(b) (Or), 2061]
	(Ans: $f(x)$ is continuous, at $x = 0$)
10.	
10.	If the function $f(x) = \frac{1}{1-x}$ continuous at $x = 1$? [Q.N.6(a), 2062]
5 8 3 5 8 9	(Ans: f(x) is discontinuous at x = 1)
11.	Let a function $f(x)$ be defined by
	$f(x) = 2 - x^2$ (x < 2) y the state of a ST
80	=3 (x=2) = x-4 (x>2)
	그는 것 같은 것 같
laad	Verify that the limit of the function exists at $x = 2$. Is the function continuous at $x = 2$? State how can you make it continuous. [Q.N.13(b), 2063]
	(Ans: $f(x)$ is not continuous at $x = 2$)
12.	Why the function f (x) = Sin $\frac{1}{x}$ is not continuous at x = 0 ? [Q.N. 6(c), 2064]
	그는 그 같은 것 같아요. 것 않는 것 같아요? 것은 것 것 것 같아요? 이 집에 가지 않는 것 같아요? 이 것 같아요? 이 가 가 가 가 다 가 다 가 다 가 다 가 다 가 다 가 다 가 다
	(Ans: not continuous)
13.	Show that the function f (x) = $\frac{\sin^2 ax}{x^2}$, (x \ne 0)
	= 1 , (x = 0)
	is discontinuous at x = 0.
	Redefine the function is such a way that it becomes continuous at $x = 0$.
	[Q.N. 13(b)(or), 2064]
14.	Discuss the continuity of the function $\frac{x^2-9}{x-3}$ and point out the discontinuity if
	exists. [Q.N. 6(a), 2065]
	(Ans: discontinuous)
15.	Test the continuity of the function
jest.	x, when $0 \le x < \frac{1}{2}$
	$f(x) = 1$, when $x = \frac{1}{2}$
	$1 - x$, when $\frac{1}{2} < x < 1$
-	at $x = \frac{1}{2}$. [Q.N. 12(b, or), 2065]
	(Ans: discontinuous)

Addented the memory of the other way Question C Section with Synabols. 203

16. A function is defined as follows : f (x) when x<0 = -X = X when 0<x<1 = 2 - x when $x \ge 1$ [Q.N.12 (b) (or), 2066] show that it is continuous at x = 0 and x = 1= x + 2 when $x \neq 2$, 17. Test the continuity of f (x) = 4 when x = 2; at x = 2. 2 [Q.N.6 (a), 2067] (Ans: Continuous) Discuss the continuity of the function : 18. $= x \sin 1/x$ when $x \neq 0$ f(x)when x = 0; at x = 0. = 0 4 [Q.N.12 (b)Or, 2067] (Ans: Continuous) A function f (x) is defined as follows: 19. 2x+1 for x<1 for x=1 for x>1 $f(x) = \begin{cases} 2 \\ 3x \end{cases}$ Is the function continuous at x = 1? If not, can it be made continuous at [Q.N.9(b)(Or),2068] x = 1?(Ans: Not continuous) x Te eucline of the crastic (chamileout callA Define continuity of a function at a point. A function is defined as follows: 20. $f(x) = \begin{cases} \frac{2x^2 - 18}{x - 3} & \text{for } x \neq 3 \end{cases}$ find the value of k so that f(x) is continuous at x = 3. [Q.N. 9(b)(Or), Set 'A' 2069] (Ans: 10) Show that the funcation a car (x) shill fost calA 21. (Q.N. 9(h)(Or), 2071 'D') when $0 \le x < \frac{1}{2}$, Derivatives $f(x) = \begin{cases} 1 & \text{when } x = \frac{1}{2} \\ 1 - x & \text{when } \frac{1}{2} < x < 1 \text{ points } x < (x \text{ points } x \text{ set } x) \end{cases}$ is discontinuous at $x = \frac{1}{2}$. Also, write how it could be made continuous? [Q.N. 9(b)(Or), Set 'B' 2069] Let a function f(x) be defined by $f(x) = \begin{cases} 2-x^2 & \text{for } x < 2 \\ 3 & \text{for } x = 2 \\ y = 4 & \text{for } x < 2 \end{cases}$ 22. Show that the limit of the function f(x) exists as x = 2. is the function f(x)continuous at x=2? If not, how would you make it continuous? [Q.N. 9(b)(Or), Supp. 2069]

3+2x for $-\frac{3}{2} \le x < 0$ 23. A function f(x) is defined as follows: f(x) = 43–2x for 0≤x< $\frac{3}{2}$ -3-2x for x≥³/₂ as Show that f(x) is continuous at x = 0 but discontinuous at $x = \frac{3}{2}$. [Q.N. 9(b)(Or), 2070 'C'] 24. A function f(x) is defined below: kx+3 for x≥2 $f(\mathbf{x}) =$ 3x-1 for x<2 Find the value of k so that f(x) is continuous at x = 2. (Ans: 1) Show that the function [Q.N. 9(b)(Or), 2070 'D'] 25. $f(\mathbf{x}) = \begin{cases} \mathbf{x}, & \text{when } 0 \le \mathbf{x} < \frac{1}{2} \\ 1, & \text{when } \mathbf{x} = \frac{1}{2} \\ 1 - \mathbf{x}, & \text{when } \frac{1}{2} < \mathbf{x} < 1 \end{cases}$

is discontinuous at
$$x = \frac{1}{2}$$

26.

1.

2.

3.

Also, redefine f(x) so as to f(x) be continuous at $x = \frac{1}{2}$ [Q.N. 9(b)(Or), 2071 'C'] Show that the function

$$f(x) = \begin{cases} \frac{1}{1-x}, \text{ when } 0 < x < \frac{1}{2} \\ \frac{1}{2}, \text{ when } x = \frac{1}{2} \\ \frac{3}{2-x}, \text{ when } \frac{1}{2} < x < 1 \end{cases}$$

is discontinuous at $x = \frac{1}{2}$. Also redefine f(x) so as to f(x) be continuous at $x = \frac{1}{2}$. [Q.N. 9(b)(Or), 2071 'D']

Unit 13 – The Derivatives

Find dy/dx of y = e^{5x} sin(logx). $\left(\text{Ans: } e^{5x} \left[\frac{\cos(\log x)}{x} + 5 \sin(\log x) \right] \right)$ Find, from the first principles the derivative of : y = $\frac{1}{\sqrt{ax + b}}$ [Q.N.13(a), 2056] $\left(\frac{\text{Ans: } -\frac{a}{3}}{2(ax + b)^{2}} \right)$

Find $\frac{dy}{dx}$ of $y = e^{Sin(\log x)}$

(Ans: $\frac{1}{x} e^{\sin(\log x)}$. cos (logx)

[Q.N.5(c), 2057]

Find, from the first principles the derivative of $y = \sqrt{\sin 2x}$ 4. [Q.N.13(a), 2057] $\left(\text{Ans: } \frac{\cos 2x}{\sqrt{\sin 2x}}\right)$ Find $\frac{dy}{dx}$ of x = a sint, y = a cost. [Q.N.5(c), 2058] 5. (Ans: - tant) Find, from definition, the derivatives of sin2x [Q.N.13(a), 2058] 6. (Ans: 2cos2x) Find $\frac{dy}{dx}$ of x = a sint, y = a cost. 7. [Q.N.5(c), 2059] (Ans: - tant) [Q.N.13(a), 2058] 8. Find from definition the derivatives of sin2x. (Ans: 2cos2x) Find $\frac{dy}{dx}$ of x = a sint, y = a cost. [Q.N.13(a)Or, 2058] 9. (Ans: - tant) Find from the first principles the derivative of $\frac{1}{\sqrt{2r}}$. [Q.N.13(a), 2059] 10. Ans: $\frac{-3}{2(3x-4)}$ 11. Find $\frac{dy}{dx}$ when x= 2a tan and y = a sec² θ [Q.N.5(c), 2060] , (Ans: tanθ) Find $\frac{dy}{dx}$ from first principle y = $\sqrt{\tan x}$ 12. [Q.N.13(a), 2060] $\left(\text{Ans:} \frac{\sec^2 x}{2\sqrt{\tan x}}\right)$ self modernieb 13. Differentiate Sinx with respect to tanx. [Q.N.5(c), 2061] (Ans: cos³x) Find $\frac{dy}{dx}$ from first principle when $y = x + \sqrt{x}$ 14,000 [Q.N.13(a), 2061] $\left(\text{Ans: } 1 + \frac{1}{2\sqrt{y}}\right)$ 15. Find $\frac{dy}{dx}$ if $y = \tan^{-1} \frac{2x}{1-x^2}$ [Q.N.5(c), 2062] $\left(\text{Ans:} \frac{1}{1+x^2}\right)$ Find from definition, the derivative of $\sqrt{\tan x}$. Show that the rectangle of largest 16. [Q.N.13(a), 2062] possible area for a given perimeter is a square. $\left(\text{Ans:} \frac{\text{sec}^2 x}{2\sqrt{\tan x}} \right)$ Find $\frac{dy}{dx}$ when $y = \sin^{-1}(3x - 4x^3)$ 17. [Q.N.5(b), 2063] (Ans: $\frac{3}{\sqrt{1-x^2}}$)

Later and the second second

18.	Find, from definition, the derivative of $\frac{1}{\sqrt{x+2}}$	[Q.N.12(a) Or, 2063]
	$\left(\operatorname{Ans:} \frac{-1}{2(x+2)^{3/2}}\right)$	Fied from the first or
19.	Find $\frac{dy}{dx}$ where y = tan ⁻¹ $\left(\frac{2x}{1-x^2}\right)$	[Q.N. 5(b), 2064
20.	$\left(Ans: \frac{1}{1+x^2}\right)$ Find from definition the derivative of Cos ² x. (Ans: - cos2x)	[Q.N. 12(b)(or), 2064
21.	Find $\frac{dy}{dx}$, when	this signal to KE Sura
(1605)	y = Sin θ and θ = 5x ² - 6x + 2. (Ans: (10x - 6) cos (5x ² - 6x + 2))	[Q.N. 5(c), 2065]
22.	Find from first principles, the derivative of $\sqrt{\sin 2x}$. (Ans: $\frac{\cos 2x}{\sqrt{\sin 2x}}$)	(Aner – tanti)
23.	Find $\frac{dy}{dx}$ if $ax^2 + 2hxy + by^2 = 1$	[Q.N.5 (c), 2066]
2.41	$\left(\text{Ans:} \frac{-ax + hy}{hx + by} \right)$	America
24. 10058	Find from first principles the derivatives of sin2x. (Ans: 2cos2x)	[Q.N.13 (a), 2066]
25.	Find the derivative of $\tan^{-1} \frac{\sin 2x}{1 + \cos 2x}$	2 [Q.N.5 (c), 2067]
[08/~	(Ans: 1)	2. Find ²² train life, pr
26.	Find from definition, the derivative of $\frac{1}{\sqrt{x}}$.	4 [Q.N.13 (a), 2067]
1808	$\left(\operatorname{Ans:} \frac{1}{2x\sqrt{x}}\right)$	3. Differentiale Sinorul (Itale: me ² v)
27.	Find the derivative of $\frac{1}{x-\sqrt{a^2+x^2}}$	[Q.N.5(a),2068]
	$\left(\text{Ans:} \frac{-1}{a^2} \left(1 + \frac{x}{\sqrt{a^2 + x^2}}\right)\right)$	
28.	Find from first principle, the derivative of sin4x. (Ans: 4 cos 4x)	[Q.N.10(a),2068]
29.	Find $\frac{dy}{dx}$ if $x^3 + y^3 - 3axy = 0$.	enA)
12021) (3.402	$\left(Ans: \frac{ay - x^2}{y^2 - ax}\right) is fit would state to extremely end of the set of t$	[Q.N. 5(a), Set 'A' 2069]
30.	Find from first principles the derivative of $\sqrt{2x+3}$.	(Ans sector)
	$\left(Ans: \frac{1}{\sqrt{2x+3}} \right)$	[Q.N. 10(a), Set 'A' 2069]
31.	Find $\frac{dy}{dx}$ when $y = \frac{1}{\sec x - \tan x}$.	[Q.N. 5(a), Set 'B' 2069]
	(Ans: secxtanx + sec ² x)	1 St - IV. /

Find from first principles the derivative of $f(x) = \frac{1}{\sqrt{x+x}}$ [Q.N. 10(a), Set 'B' 2069] 32. $\begin{pmatrix} \text{Ans:} \frac{-1}{2(x+a)^{\frac{3}{2}}} \end{pmatrix}$ Find $\frac{dy}{dx}$ if x = 2a tan θ and y = a sec² θ . [Q.N. 5(a), Supp. 2069] 33. (Ans: tan 0) Find from first principle, the derivative of tan3x. [Q.N. 10(a), Supp. 2069] 34. (Ans: 3sec² 3x) Find $\frac{dy}{dx}$ when $x = t + \frac{1}{t}$ and $y = t - \frac{1}{t}$. [Q.N. 5(a), 2070 'C'] 35. $\left(\operatorname{Ans}:\frac{t^2+1}{t^2-1}\right)$ Find from first principles the derivative of $\sqrt{2-3x}$. 36. $\left(\operatorname{Ans}-\frac{3}{2\sqrt{2-3v}}\right)$ [Q.N. 10(a), 2070 'C'] [Q.N. 5(a), 2070 'D'] Find $\frac{dy}{dx}$ when x - y = tan xy. 37. $\left(\text{Ans:} \frac{1 - y \sec^2 xy}{1 + x \sec^2 xy} \right)$ [Q.N. 10(a), 2070 'D'] Find from first principles, the derivative of $\sqrt{1+x}$. 38. $\left(\text{Ans:} \frac{1}{2\sqrt{1+x}}\right)$ Find $\frac{dy}{dx}$ when $x + y = \sin(x + y)$. [Q.N. 5(a), 2071 'C'] 39. $(Ans: \frac{dy}{dx} = -1)$ Find, from definition, the derivative of $\sqrt{\frac{1}{1-x}}$ Q.N. 10(a), 2071 'C'l 40. $\left(Ans:\frac{1}{2(1-x)}\right)$ Find the derivative of tanx with respect to cotx. (Ans: - tan² x) [Q.N. 5(a), 2071 'D'] 41. Find from first principles the derivative of $\sqrt{\frac{1}{x}}$. [Q.N. 10(a), 2071 'D'] 42. $\left(\text{Ans:} -\frac{1}{2x\sqrt{x}} \right)$ **Unit 14 – Applications of Derivatives** 14.1 Increasing and Decreasing Function Examine whether the function $f(x) = 15x^2 - 14x + 1$ is increasing or decreasing at 1 $x = \frac{2}{5}$ and $x = \frac{5}{5}$. [Q.N.5(c),2068] (Ans: Decreasing at 2/5, Increasing at 5/2) For any curve y = f(x), what do f'(x) > 0 and f'(x) < 0 represent? 2. [Q.N. 5(c), Set 'B' 2069] Test the increasing and decreasing of the function 3. $f(x) = x^2 - 3x + 4$ at the points x = 2 and x = 1. [Q.N. 5(c), Supp. 2069] (Ans: Increasing at x = 2, decreasing at x = 1)

4. Find the interval in which the function $f(x) = 3x^2 - 6x + 5$ is increasing or decreasing. [Q.N. 5(c), 2070 'C']

(Ans: Increasing on $(1, \infty)$ and decreasing on $(-\infty, 1)$)

Find the intervals in which $f(x) = x^2 - 2x + 10$ is increasing or decreasing.

(Ans: Increasing on $(1, \infty)$, decreasing on $(-\infty, 1)$) [Q.N. 5(c), 2071 'C']

14.2 Extrema of a Function

1. Determine where the graph is concave upwards or concave downwards for $f(x) = x^4 - 8x^3 + 18x^2 - 24$. Also find the point of inflection. [Q.N.13(a) (Or), 2056]

Ans: Concave upwards for x<1 and x>3 Concave downwards for 1<x<3 Points of inflection x = 1, x = 3

2. Find the maximum and minimum values of the function

 $f(x) = 4x^3 - 6x^2 - 9x + 1$. Also find the point of inflection.

Ans:
and Point of inflection
$$x = \frac{1}{2}$$

[Q.N.13(a) (Or), 2057]

3. Show that the rectangle of largest possible area for a given perimeter is a square. [Q.N.13(a) (Or), 2058]

Show that the rectangle of largest possible area for a given perimeter, is a square. [Q.N.13(a) (Or), 2059]

Find the maximum and minimum value of the function $x^3 - 3x^3 + 6x + 5$, if exist. Also, find the point of inflexion. [Q.N.13(a) (Or), 2060]

(Ans: Neither maximum nor minimum) and Point of inflection is x = 1)

A man wishes to fence a rectangular garden with 256 m. fencing material. Find the maximum area he can enclose. [Q.N.13(a) (Or), 2061]

(Ans: Maximum value of A = 4096m²)

Calculate the maximum and minimum values of $x^3 - 3x^2 - 9x + 27$. (Ans: max = 32, min = 0) Find the maximum area of a rectangular plot of land which can be enclosed by a rope of length 60 metres. (Ans: (Q,N, 12(a), 2063))

(Ans: 225 m²)

4.

5.

6.

7.

8.

12.

13.

- Show that the rectangle of largest possible area for a given perimeter is a square.
 Using derivatives find two numbers where are in 10 [Q.N. 13(a, or), 2065]
- Using derivatives, find two numbers whose sum is 10 and sum of whose squares is minimum. (Ans: 5, 5)
 [Q.N.13 (a) (or), 2066]
- 11. A man wishes to fence a rectangular garden with 256 meter fencing material. Find the maximum area he can enclose.

4 [Q.N.13 (a)Or, 2067]

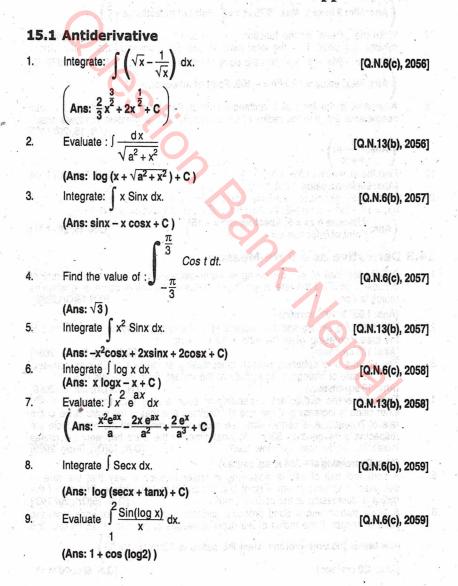
List the criteria for the function y = f(x) to have local maxima and local minima at a point. Find the local maxima and local minima of the function $f(x) = 4x^3 - 15x^2 + 12x + 7$. Also, find the point of inflection. [Q.N.15,2068] (Ans: Max: 9.75, Min: 3, Pt. of inflection x = 5/4)

What are the criteria for a function y = f(x) to have the local maxima and local minima at a point? Find the local maxima and local minima of the function $f(x) = 4x^3 - 6x^2 - 9x + 1$ on the interval (-1,2). Also find the point of inflection.

 $\left(\text{Ans: Max}: 3\frac{1}{2}, \text{Min: } -12\frac{1}{2}, \text{ point of inf} = \frac{1}{2}\right)$ [Q.N. 15, Set 'A' 2069]

Find the maximum and minimum values of the function $f(x) = x^3 - 6x^2 + 9x - 2$. 14. Also, find the point of inflection, if any. [Q.N. 15, Set 'B' 2069] (Ans: (Max : 2 at x = 1, Min : -2 at x = 3) x = 2 is point of inflection) What are the criteria for the graph of the function y=f(x) to have concave 15. upward and concave downward? Determine where the graph is concave upward and where it is concave downward of the function. $f(x) = x^4 - 8x^3 + 18x^2 - 24$ [Q.N. 15, Supp. 2069] (Ans: Concave upward for x < 1, x > 3, concave downward for 1 < x < 3) 16. List the criteria for the function y = f(x) to have the local maxima and local minima at a point. Find the local maxima and local minima of the function $f(x) = 4x^3 - 15x^2 + 12x + 7$. Also, find the point of inflection. [Q.N. 15, 2070 'C'] Ans: Min: 3 at x= 2; Max : 9.75 at x = $\frac{1}{2}$, Point of inflection x = 17. Write the criteria for the function y = f(x) to have the local maxima and local minima at a point. Find the local maxima and local minima of the function f(x) = $2x^3 - 9x^2 - 24x + 3$. Also find the point of inflection. [Q.N. 15, 2070 'D'] Ans: Max. value = 16, Min = - 109, Point of inflection = $\frac{3}{2}$ 18. A window is the form of a rectangle surmounted by a semi circle. If the total perimeter is 9m, find the radius of the semicircle for the greatest window's area. [Q.N. 15, 2071 'C'] Ans: $\frac{9}{4+\pi}$ m 19. Find the minimum of $f(x) = 3x^2 - 6x + 4$. [Q.N. 5(c), 2071 'D'] (Ans: Minimum value = 1 at x = 1) 20. Find the absolute maxima and absolute minima of the function $f(x) = x^3 - 3x^2 + 5$ on [-2, 2]. Also find the point of inflection of f(x), if any. Ans: Absolute max = 5, Absolute min = -15) Point of infection x = 1 [Q.N. 15, 2071 'D'] 14.3 Derivative as a Rate Measure A Spherical ball of salt dissolving in water decreases its volume at the rate of 147288 0.75cm3/min. Find the rate at which the radius of the salt is decreasing when its radius is 6cm. [Q.N.15(Or),2068] (Ans: 1.657 × 10⁻³ cm/min) The side of a square sheet is increasing at the rate of 5cm/min. At what rate is 2. the area increasing when the side is 12 cm. long? [Ans: 120 cm²/min] [Q.N. 5(c), Set 'A' 2069] The volume of a spherical balloon is increasing at the rate of 25 cubic cm/sec. Find the rate of change of its surface at the instant when its radius is 5 cm. (Ans; 10 sq. cm/sec.) [Q.N. 15(Or), Set 'B' 2069] 4. Two concentric circles are expanding in such a way that the radius of the inner circle is increasing at the rate of 10cm/sec and that of the outer circle at the rate of 7cm/sec. At a certain time, the redei of the inner and the outer circle are respectively 24 cm and 30cm. At what time, is the area between the circles increasing or decreasing? How fast? [Q.N. 15(Or), Supp. 2069] (Ans: Decreasing at -264π sq. cm/sec) 5. A spherical ball of salt is dissolving in water in such a way that the rate of decrease in volume at any instant is proportional to the surface. Prove that the radius is decreasing at the constant rate. [Q.N. 15(Or), 2070 'C'] A stone thrown into a pond produces circular ripples which expands from the 6. point of impact. If the radius of the ripple increases at the rate of 3.5cm/sec, find how fast is the area growing when the radius is 15cm. ($\pi = 1$ (Ans: 330 cm²/sec) [Q.N. 5(c), 2070 'D']

markings - Crapte Arage Question Collection with Syllabus


7. Water flows into an inverted conical tank at the rate of 42cm³/sec. When the depth of the water is 8cm, how fast is the level rising? Assume that the height of the tank is 12 cm and the radius of the top is 6cm. [Q.N. 15(Or), 2071 'C']

 $\left(\text{Ans:} \frac{21}{8\pi} \text{ cm/sec} \right)$

8.

The side of a square is increasing at the rate of 0.2cm/sec. Find the rate of increase of the i) perimeter of the square, and ii) the area of the square, when the side of square is 12 cm. [Q.N. 15(Or), 2071 'D'] (Ans: (i) 0.8 cm/sec (ii) 4.8 cm²/sec)

Unit 15 – Antiderivatives and its Applications

	Classification (Scientifican Calibration with Systems	Mainemaucs 211
10.	Evaluate ∫e ^x cos x dx.	[Q.N.13(b), 2059]
(debs	$\left(\text{Ans:} \frac{1}{2} e^{x} (\cos x + \sin x) + C\right)$	<u>X107</u> XX XX
11.	Evaluate : ∫ Sin ² 2x dx.	[Q.N.6(b), 2060]
n add	$\left(\operatorname{Ans:} \frac{x}{2} - \frac{\sin 4x}{8} + C\right)$	the statute of the st
12.	Evaluate : ∫ x sin ² x dx	[Q.N.13(b), 2060]
	(Ans: $\frac{x^2}{4} - \frac{1}{4}x \sin 2x - \frac{1}{8}\cos 2x + C$)	Bangi
18.	Evaluate : $\int \frac{1}{x} \cos(\log x) dx$.	[Q.N.6(b), 2061]
179495	(Ans: sin (logx) + C)	
14.	Integrate $\int \operatorname{Sec}^3 x dx.$	[Q.N.13(b), 2061]
	$\left(\text{Ans: } \frac{1}{2}[\text{secx. tanx} + \log(\text{secx} + \text{tanx})] + C\right)$	
15.	Evaluate : $\int x \sin x dx$ (Ans: $-x \cos x + \sin x + C$)	[Q.N.6(b), 2062]
16.	Evaluate : $\int_{0}^{-1} \frac{dx}{4-x^2}$	[Q.N.13(b) (Or), 2062]
	$\left(\operatorname{Ans}:\frac{-\pi}{6}\right)$	18 00F) x मेठी (जनसंग्रहण्ड)
17.005	e alle eller flashe harne i	[Q.N.6(b), 2063]
18.	(Ans: log (sec x + tan x) + C) Evaluate: $\int_{0}^{2} \frac{x dx}{\sqrt{x^2 + 4}}$	xo [Q.N.13(a), 2063]
10	(Ans: $2(\sqrt{2}-1))$	10 N C(h) 000(1)
19.	Integrate = $\int \csc x dx$ (Ans: log (cosecx - cotx) + c)	[Q.N. 6(b), 2064]
20.	$\int 2 \sin(\log x)$	[Q.N. 13(a), 2064]
21.	(Ans: 1 + cos (log 2)) Evaluate : ∫ log x dx (Ans: xlogx - x + c)	[Q.N. 6(b), 2065]
22.	Evaluate : ∫ e ^{ax} Cos bx dx	[Q.N. 13(b), 2065]
	$\left(\operatorname{Ans:} \frac{e^{ax} (a \cosh x + b \sinh x)}{a^2 + b^2} + c\right)$	88 Eventiares (– err (regiv) i (Ansi – og (tagit) e ci
23.0	Evaluate : $\int \frac{dx}{\sqrt{2x+1} - \sqrt{2x-3}}$	[Q.N.6 (b), 2066]
(d	$\left(\text{Ans:} \frac{1}{12}\left[(2x+1)^{\frac{3}{2}}+(2x-3)^{\frac{3}{2}}\right]+C\right)$	A THE STREET & STREET

212 Class XI (Humanities) : Chapter-w	
(10,0,13) xdx	0 Evaluate (e' cos x dx
24. Evaluate : $\int \frac{x dx}{1 + x^2}$	(0.4 (x.0
(Ans: log √5)	Evelvare S ⁻² Si dy
A	$\left(\Delta + \frac{x^{2}\pi^{2}}{2} - \frac{x}{2} \exp \lambda\right)$
25. Evaluate : $\int \frac{dx}{1 + \sin x}$	2 [Q.N.6 (b), 2067]
$\left(Ans: \frac{-2}{\tan \frac{x}{2}} + C \right)$	$\left(A_{ner} \left[\frac{x^2}{2} - \frac{1}{2} x \sin^2 x \right], \frac{1}{2} \cos^2 x + 0 \right)$
26. Evaluate : ∫ sec ³ x dx	4 [Q.N.13 (b), 2067
(1.	4 [Q.N.13 (b), 2067]
$\left(\frac{1}{2}[\sec x \tan x + \log(\sec x + \tan x)] + \right)$	C suit 350 see state
1	aisi + kojas) poi + kristi kosis) 🛓 (ann
27. Evaluate: $\int \left(1 - \frac{1}{x^2}\right) e^{x + \frac{1}{x}} dx$	[Q.N.5(b),2068]
$\begin{pmatrix} x + \frac{1}{x} \\ Ans: e^{-x} + c \end{pmatrix}$	e fraiteste 0 4
8. Evaluate:∫ cot x (log sinx) ³ dx	♀ (1] anA)
$\left(\text{Ans:} \frac{1}{4} (\log x \sin x)^4 + c\right)$	[Q.N. 5(b), Set 'A' 2069]
9. Evaluate: $\int \frac{dx}{\sin^2 x \cos^2 x}$	[Q.N. 5(b), Set 'B' 2069]
(Ans: -cot2x + c)	(i) + × + × + × + × + × + × + × + × + × +
D. Evaluate : J x sin ax dx.	[Q.N. 5(b), Supp. 2069]
$\left(Ans: \frac{-\cos ax}{a} + \frac{1}{a^2}\sin ax + c\right)$	xo the cold may the second second
I. Evaluate: $\int \frac{1}{\sqrt{2x+1} - \sqrt{2x-3}} dx$.	[Q.N. 5(b), 2070 'C']
$\left(\text{Ans:} \frac{1}{12} \left[(2x+1)^{3/2} + (2x-3)^{3/2} \right] + C \right]$	(Ansy xiegx - x - c) 3. Evelore (*** Coo bx ox
Evaluate: $\int \frac{1}{x} \sin(\log x) dx$.	[Q.N. 5(b), 2070 'D']
(Ans: - cos (logx) + c)	
Evaluate: ∫ <u>cosx-sinx</u> dx. (Ans: log(cosx + sinx) + C))	[Q.N, 5(b), 2071 'C']
Evaluate: $\int \frac{\sin\sqrt{x}}{\sqrt{x}} dx$.	⊖ +
(Ans: $-2 \cos \sqrt{x} + c$)	and the state of t

15.2	Area Between two Curves	a bodiera poleti
2060	Find the area bounded by the axis of x and the curve $y = at x = 2$ and $x = 4$. (Ans: 240 sq. units)	
2.	Find the area of the region between the curve $y^2 = 16x$ and	id the line y = 2x. [Q.N.13(b) (Or), 2056]
n Saw	$(Ans: \frac{16}{3} sq. units)$	
3.	Find the area of the circle, $x^2 + y^2 = 25$. (Ans: 25π sq. units)	[Q.N.13(b) (Or), 2057]
4 . 19865	Find the area enclose by the curve $y = 3x$, the $x - axis$ and $x = 4$. (Ans: 24 sq. unit)	l ordinates at x = 0 [Q.N.6(b), 2058]
5.	Find the area bounded by the curves $y^2 = 4ax$ and $x^2 = 4$	22. Find the areave
11306	(Ans: 16a ² / ₃ sq. units)	[Q.N.13(b) (Or), 2058]
6. 5805.	Find the area of the region between the curve $y^2 = 16x$ ar	id the line $y = 2x$.
	(Ans: $\frac{16}{3}$ sq. unit)	[Q.N.13(b) (Or), 2059]
7. [9:805]	Find the area under the curve $y = x^2$ bounded by x-a ordinates $x = 0$ and $x = a$. (Ans: $\frac{a^3}{3}$)	xis, and between the [Q.N.6(c), 2060]
1630S 3.	Find using method of integration the area bounded by the $x^2 = 4y$. (Ans: $\frac{16}{3}$ sq. units)	ne curves y ² = 4x and [Q.N.13(b) (Or), 2060]
).	Find the area bounded by curves $y = 3x^2$, $x = 1$ and $x = 3$. (Ans: 26 sq. unit)	[Q.N.6(c), 2061]
0.		[Q.N.13(b) (Or), 2061]
1 , 01(Find the area bounded by the x- axis and the curve a ordinates $x = 0$ and $x = 1$ (Ans: 2 log2 -1)	nd $y = log (1+x)$ and [Q.N.6(c), 2062]
2.	Find the area of the ellipse : $\frac{x^2}{9} + \frac{y^2}{16} = 1$	[Q.N.13(b), 2062]
3.	(Ans: 12 π sq. units) Find the area bounded by the x – axis and the following xy = 8; x = 3, x = 8	curve and ordinates
; ;;;;;	$\left(\text{Ans: 8 log}\frac{8}{3}\text{ sq. units}\right)^{3}$	(ilen :304) -
4.	Find the area of the circle $x^2 + y^2 = 25$, using method of in	tegration.
5.	(Ans: 25π sq. units) Find the area bounded by the x-axis and the following $y = \log x, x = 1, x = e$	[Q.N.13(a) Or, 2063] curve and ordinates [Q.N. 6(a), 2064]
6	(Ans: 1 sq. unit) Find the area of the circle $x^2 + y^2 = 9$ using method of inte	gration. [Q.N. 13(a)(or), 2064]
17.	(Ans: 9π sq. units) Find the area of the region bounded by the curve $y = e$ ordinates $x = 1$; $x = 2$. (Ans: $(e^2 - e)$ sq. units)	• • • • • • •

214	. Class XI (Humanities) : Chapter-wise Question C	ollection with Syllabus	
18.	Using method of integration, find the area under the (Ans: πa^2 sq. units)		
19.	Find the area bounded by the curve y = sinx, x = 0 (Ans: 2sq. unit)), x = π. [Q.N.6 (c), 2066]	
20.	Find the area of the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$	testani an 🖗 an No	
	$(Ans: 6\pi sq. unit)$	[Q.N.13 (b)(or), 2066]	
21.	Find the area under the curve $y = 2\sqrt{x}$ between $x = 0$ and $x = 1$.		
	$\left(\operatorname{Ans}:\frac{4}{3}\operatorname{sq.unit}\right)$	2 [Q.N.6 (c), 2067]	
22.	Find the area under the curves $\frac{x^2}{16} + \frac{y^2}{25} = 1$ using method of integration.		
23.	(Ans: 20 π sq. unit) Find the area bounded by the curve y ² = 4ax and	4 [Q.N.13 (b)Or, 2067] the line x = a.	
	(Ans: 882 sq. units.)	[Q.N.10(b),2068]	
24.	Find the area of the region between the curve $y^2 = 16 x$ and the line $y = 2x$.	(Ans: 15 ag. unit)	
VeV	(Ans: $\frac{16}{3}$ sq. units.)	[Q.N. 10(b), Set 'A' 2069	
25.	Find the area of the region bounded by the curve	-12	
	x^2 +4y and x=y	[Q.N. 10(b), Set 'B' 2069	
	$\left(\text{Ans:} \frac{8}{3} \text{ sq. units} \right)$		
26.		(annu pa ^{bl} ionA)	
$x^2 = 4a(y - 2a)$ and $y = 6a$.	이 가게는 비행되고, 그는 그는 것 같아요. 그는 것 가지만 등 방송한 것이다.	Q.N. 10(b), Supp. 2069	
	$\left(\text{Ans:} \frac{32}{3} a^2 \text{ sq unit} \right)$	(Ans: 28-sq. unit) Usung integration, tind t	
37. Find the area bounded by y-axis, the curve $x^2 = 4a(y - 2x)$			
	$\left(\text{Ans:} \frac{32}{2} a^2 \text{ sq. unit}\right)$	[Q.N. 10(b), 2070 'C'	
38.	Find the area enclosed by the axis	Sheer Slain A	
10939	$y = 3x - 5x^2.$	[Q.N. 10(b), 2070 'D	
i i i al al	$\left(\text{Ans: } \frac{9}{50} \text{ sq. units}\right)$	(annu so n (anna)	
39.	Using integration, find the area of the ellipse $\frac{x^2}{a^2}$.	$\frac{y^2}{b^2} = 1.$	
	(Ans: πab)	(Q.N. 10(b), 2071 'C	
10.	Using integration, find the area under the curve $\frac{x}{g}$	+ <u>y</u> = 1, service of the R	
1.60 3912 2912	(Ans: 12π sq. units)	IO N 10/b) 2071 D	
		and the second sec	

(Ansi) sq. unit) Find the asean of the citele of any?